Accepted author manuscript, 6.67 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Tailoring MnO2 Cathode Interface via Organic–Inorganic Hybridization Engineering for Ultra‐Stable Aqueous Zinc‐Ion Batteries
AU - Ding, Yaxi
AU - Cai, Chun
AU - Ma, Longtao
AU - Wang, Jiahong
AU - Mercer, Michael Peter
AU - Liu, Jun
AU - Kramer, Denis
AU - Yu, Xuefeng
AU - Xue, Dongfeng
AU - Zhi, Chunyi
AU - Peng, Chao
PY - 2025/1/21
Y1 - 2025/1/21
N2 - Manganese (Mn)‐based aqueous zinc ion batteries show great promise for large‐scale energy storage due to their high capacity, environmental friendliness, and low cost. However, they suffer from the severe capacity decay associated with the dissolution of Mn from the cathode/electrolyte interface. In this study, theoretical modeling inspires that the amino acid molecule, isoleucine (Ile), can be an ideal surface coating material for α‐MnO2 to stabilize the surface Mn lattice and mitigate Mn dissolution, thereby enhancing cycling stability. Furthermore, the coated Ile molecular layers can accumulate Zn2+ ions from the electrolyte and promote those ions’ transport to the α‐MnO2 cathode while prohibiting H2O from accessing the α‐MnO2 surface, reducing the surface erosion. The compact organic–inorganic interface is experimentally synthesized for α‐MnO2 utilizing Ile that shows homogeneous distribution on the well‐defined Ile‐α‐MnO2 nanorod electrodes. The fabricated aqueous zinc‐ion battery exhibits a high specific capacity (332.8 mAh g−1 at 0.1 A g−1) and excellent cycling stability (85% after 2000 cycles at 1 A g−1) as well as good inhibition toward Mn2+ dissolution, surpassing most reported cathode materials. This organic–inorganic hybrid interface design provides a new, simple avenue for developing high‐performance and low‐cost Mn‐based aqueous zinc ion batteries (AZIBs).
AB - Manganese (Mn)‐based aqueous zinc ion batteries show great promise for large‐scale energy storage due to their high capacity, environmental friendliness, and low cost. However, they suffer from the severe capacity decay associated with the dissolution of Mn from the cathode/electrolyte interface. In this study, theoretical modeling inspires that the amino acid molecule, isoleucine (Ile), can be an ideal surface coating material for α‐MnO2 to stabilize the surface Mn lattice and mitigate Mn dissolution, thereby enhancing cycling stability. Furthermore, the coated Ile molecular layers can accumulate Zn2+ ions from the electrolyte and promote those ions’ transport to the α‐MnO2 cathode while prohibiting H2O from accessing the α‐MnO2 surface, reducing the surface erosion. The compact organic–inorganic interface is experimentally synthesized for α‐MnO2 utilizing Ile that shows homogeneous distribution on the well‐defined Ile‐α‐MnO2 nanorod electrodes. The fabricated aqueous zinc‐ion battery exhibits a high specific capacity (332.8 mAh g−1 at 0.1 A g−1) and excellent cycling stability (85% after 2000 cycles at 1 A g−1) as well as good inhibition toward Mn2+ dissolution, surpassing most reported cathode materials. This organic–inorganic hybrid interface design provides a new, simple avenue for developing high‐performance and low‐cost Mn‐based aqueous zinc ion batteries (AZIBs).
U2 - 10.1002/aenm.202402819
DO - 10.1002/aenm.202402819
M3 - Journal article
VL - 15
JO - Advanced Energy Materials
JF - Advanced Energy Materials
SN - 1614-6832
IS - 3
M1 - 2402819
ER -