4.67 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Textural evidence of fragmentation and densification processes in a fossilised shallow conduit on the flank of Nevados de Chillán Volcanic Complex
AU - Rojas, F.
AU - Browning, J.
AU - Tuffen, H.
AU - Cembrano, J.
AU - Espinosa-Leal, J.
AU - Unwin, H.E.
AU - Mitchell, T.M.
AU - Hofer-Apostolidis, K.
AU - Meredith, P.G.
PY - 2024/3/31
Y1 - 2024/3/31
N2 - Eruptive style transitions are common in silicic volcanoes and an improved understanding of transitional controls is necessary for hazard forecasting. Examples of hybrid eruptions where both explosive and effusive eruptive behaviours occur simultaneously have led to a re-examination of models used to understand these complex and poorly understood processes. Exposed fossilised conduits record evidence of magmatic processes and provide the opportunity to examine structures and textures related to these transitions. Here we present a conceptual model of the evolution of a narrow (2.5 m wide) conduit located on the SW flank of the Nevados de Chillán Volcanic Complex, Chile. This conduit records evidence of fragmentation and densification processes through intercalated and juxtaposed banded, porous and dense domains. To understand how the products of each eruptive style relate and evolve during conduit formation, we combined qualitative textural analyses at different scales (outcrop, optical microscope and electron microscope), pore size and shape measurements using ImageJ, connected porosity measurements made using a helium pycnometer and total water content measurements using Fourier transform infrared spectroscopy. The results allow us to identify five principal phases of the conduit evolution: (I) an explosive phase where the conduit is filled with pyroclastic material, evidenced in the pyroclastic deposit preserved at the conduit wall, (II) a cyclic process of fragmentation and densification within the conduit that generates intercalation of the porous and dense domains, and leads to a hybrid explosive-effusive phase, (III) the formation of a dense magma plug that eventually seals the conduit and deforms vesicles and bands, (IV) the compaction of the pyroclastic domain due to the ascent of the plug, driving porosity reduction (to as little as 3% in the densest bands), with micro-folds and glassy fiamme, and (V) a final phase of post-sintering vesicle relaxation, yielding regular, mainly rounded, shapes. We compare our results with other exposed and examined conduits to propose a model of conduit evolution during small-volume, short-lived silicic eruptions.
AB - Eruptive style transitions are common in silicic volcanoes and an improved understanding of transitional controls is necessary for hazard forecasting. Examples of hybrid eruptions where both explosive and effusive eruptive behaviours occur simultaneously have led to a re-examination of models used to understand these complex and poorly understood processes. Exposed fossilised conduits record evidence of magmatic processes and provide the opportunity to examine structures and textures related to these transitions. Here we present a conceptual model of the evolution of a narrow (2.5 m wide) conduit located on the SW flank of the Nevados de Chillán Volcanic Complex, Chile. This conduit records evidence of fragmentation and densification processes through intercalated and juxtaposed banded, porous and dense domains. To understand how the products of each eruptive style relate and evolve during conduit formation, we combined qualitative textural analyses at different scales (outcrop, optical microscope and electron microscope), pore size and shape measurements using ImageJ, connected porosity measurements made using a helium pycnometer and total water content measurements using Fourier transform infrared spectroscopy. The results allow us to identify five principal phases of the conduit evolution: (I) an explosive phase where the conduit is filled with pyroclastic material, evidenced in the pyroclastic deposit preserved at the conduit wall, (II) a cyclic process of fragmentation and densification within the conduit that generates intercalation of the porous and dense domains, and leads to a hybrid explosive-effusive phase, (III) the formation of a dense magma plug that eventually seals the conduit and deforms vesicles and bands, (IV) the compaction of the pyroclastic domain due to the ascent of the plug, driving porosity reduction (to as little as 3% in the densest bands), with micro-folds and glassy fiamme, and (V) a final phase of post-sintering vesicle relaxation, yielding regular, mainly rounded, shapes. We compare our results with other exposed and examined conduits to propose a model of conduit evolution during small-volume, short-lived silicic eruptions.
U2 - 10.1016/j.jvolgeores.2024.108028
DO - 10.1016/j.jvolgeores.2024.108028
M3 - Journal article
VL - 447
JO - Journal of Volcanology and Geothermal Research
JF - Journal of Volcanology and Geothermal Research
SN - 0377-0273
M1 - 108028
ER -