Home > Research > Publications & Outputs > The effects of gap size on some microclimate va...
View graph of relations

The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. / Abd Latif, Zulkiflee; Blackburn, George Alan.
In: International Journal of Biometeorology, Vol. 54, No. 2, 03.2010, p. 119-129.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Abd Latif Z, Blackburn GA. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. International Journal of Biometeorology. 2010 Mar;54(2):119-129. doi: 10.1007/s00484-009-0260-1

Author

Abd Latif, Zulkiflee ; Blackburn, George Alan. / The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest. In: International Journal of Biometeorology. 2010 ; Vol. 54, No. 2. pp. 119-129.

Bibtex

@article{31b58b3f6a82442f90fec75af29636e5,
title = "The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.",
abstract = "The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T (A)), soil temperature (T (S)), relative humidity (h), wind speed (v) and soil water content (I) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T (A), T (S), and I increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for I. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.",
keywords = "Treefall gap, Microclimate, Soil water content, Broadleaved deciduous forest",
author = "{Abd Latif}, Zulkiflee and Blackburn, {George Alan}",
year = "2010",
month = mar,
doi = "10.1007/s00484-009-0260-1",
language = "English",
volume = "54",
pages = "119--129",
journal = "International Journal of Biometeorology",
issn = "0020-7128",
publisher = "Springer New York LLC",
number = "2",

}

RIS

TY - JOUR

T1 - The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

AU - Abd Latif, Zulkiflee

AU - Blackburn, George Alan

PY - 2010/3

Y1 - 2010/3

N2 - The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T (A)), soil temperature (T (S)), relative humidity (h), wind speed (v) and soil water content (I) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T (A), T (S), and I increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for I. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

AB - The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T (A)), soil temperature (T (S)), relative humidity (h), wind speed (v) and soil water content (I) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T (A), T (S), and I increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for I. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

KW - Treefall gap

KW - Microclimate

KW - Soil water content

KW - Broadleaved deciduous forest

UR - http://www.scopus.com/inward/record.url?scp=77951764970&partnerID=8YFLogxK

U2 - 10.1007/s00484-009-0260-1

DO - 10.1007/s00484-009-0260-1

M3 - Journal article

VL - 54

SP - 119

EP - 129

JO - International Journal of Biometeorology

JF - International Journal of Biometeorology

SN - 0020-7128

IS - 2

ER -