Home > Research > Publications & Outputs > The impact of different forms of exercise on ci...

Electronic data


Text available via DOI:

View graph of relations

The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease

Research output: Contribution to Journal/MagazineJournal articlepeer-review

  • Panagiotis Ferentinos
  • Costas Tsakirides
  • Michelle Swainson
  • Adam Davison
  • Marrissa Martyn-St James
  • Theoharis Ispoglou
<mark>Journal publication date</mark>30/04/2022
<mark>Journal</mark>European Journal of Applied Physiology
Issue number4
Number of pages46
Pages (from-to)815-860
Publication StatusPublished
Early online date12/01/22
<mark>Original language</mark>English


Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.