Home > Research > Publications & Outputs > Thermal photogrammetric imaging

Electronic data

  • 1-s2.0-S037702731630186X-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Volcanology and Geothermal Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Volcanology and Geothermal Research., 337, 2017 DOI: 10.1016/j.jvolgeores.2017.03.022

    Accepted author manuscript, 1.48 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Thermal photogrammetric imaging: a new technique for monitoring dome eruptions

Research output: Contribution to journalJournal articlepeer-review

E-pub ahead of print
Close
<mark>Journal publication date</mark>21/03/2017
<mark>Journal</mark>Journal of Volcanology and Geothermal Research
Volume337
Number of pages6
Pages (from-to)140-145
Publication StatusE-pub ahead of print
Early online date21/03/17
<mark>Original language</mark>English

Abstract

Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models from photographs and can form a valuable component of hazard monitoring at active volcanic domes. However, model generation from visible imagery can be prevented due to poor lighting conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a SfM workflow to mitigate these issues and provide more continuous time-series data than visible counterparts. We demonstrate our methodology by producing georeferenced photogrammetric models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima (Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, despite being less detailed than their DSLR counterparts, the thermal models are more than adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived using the DSLR. Significantly, we were able to construct thermal models in situations where degassing and poor lighting prevented the construction of models from DSLR imagery, providing substantially better data continuity than would have otherwise been possible. We conclude that thermal photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing associated volcanic risks.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Volcanology and Geothermal Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Volcanology and Geothermal Research., 337, 2017 DOI: 10.1016/j.jvolgeores.2017.03.022