Accepted author manuscript, 229 KB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Research output: Contribution to conference - Without ISBN/ISSN › Conference paper › peer-review
Research output: Contribution to conference - Without ISBN/ISSN › Conference paper › peer-review
}
TY - CONF
T1 - Three-dimensional Access Point Assignment in Hybrid VLC, mmWave and WiFi Wireless Access Networks
T2 - 2020 IEEE International Conference on Communications
AU - Zarakovitis, C.C.
AU - Chien, S.F.
AU - Pervaiz, H.
AU - Ni, Q.
AU - Cosmas, J.
AU - Jawad, N.
AU - Kourtis, M.-A.
AU - Koumaras, H.
AU - Anagnostopoulos, T.
N1 - Conference code: 162074 Export Date: 1 September 2020 References: EU H2020 Internet of Radio Light (IoRL) Project, , https://5gppp.eu/iorl/; Basnayaka, D.A., Haas, H., Hybrid rf and vlc systems: Improving user data rate performance of vlc systems (2015) IEEE Veh. Technol. Conf., pp. 1-5. , Glasgow, UK, May; Li, X., Zhang, R., Hanzo, L., Cooperative load balancing in hybrid visible light communications and wifi (2015) IEEE Trans. Commun., 63 (4), pp. 1319-1329; Wang, Y., Basnayaka, D.A., Haas, H., Dynamic load balancing for hybrid li-fi and rf indoor networks (2015) IEEE Int. Conf. Commun., pp. 1422-1427. , London, UK; Kelly, F., Charging and rate control for elastic traffic (1997) IEEE Trans. on Emerging Telecommun. Technol., 8 (1), pp. 33-37; Wang, Y., Haas, H., Dynamic load balancing with handover in hybrid li-fi and wi-fi networks (2015) IEEE/OSA J. Lightw. Technol., 33 (22), pp. 4671-4682. , Nov; Wang, Y., Basnayaka, D.A., Wu, X., Haas, H., Optimization of load balancing in hybrid lifi/rf networks (2017) IEEE Trans. Commun., 65 (4), pp. 1708-1720; Wu, X., Safari, M., Haas, H., Joint optimisation of load balancing and handover for hybrid lifi and wifi networks (2017) IEEE Wireless Commun. and Netw. Conf., pp. 1-5. , San Francisco, US; Wu, X., Haas, H., Access point assignment in hybrid lifi and wifi networks in consideration of lifi channel blockage (2017) IEEE Workshop in Signal Processing Advances in Wireless Commun.; Wu, X., Basnayaka, D., Safari, M., Haas, H., Two-stage access point selection for hybrid vlc and rf networks (2016) IEEE Conf. Personal, Indoor, and Mobile Radio Commun., pp. 1-6; Kelly, F., Charging and rate control for elastic traffic (1997) Transactions on Emerging Telecommunications Technologies, 8 (1), pp. 33-37; Wang, Y., Haas, H., A comParison of load balancing techniques for hybrid lifi/rf networks (2017) ACM Workshop on Visible Light Commun. Systems, pp. 43-47; Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V.C.M., Hanzo, L., Energy efficient subchannel and power allocation for the software defined heterogeneous vlc and rf networks (2017) IEEE J. Selected Areas Commun., 1 (99), p. 1; Boyd, S., Vandenberghe, L., (2009) Convex Optimization, , Cambridge University Press; EU H2020 Internet of Radio Light (IoRL) Project, Deliverable 3. 2, , https://iorl.5g-ppp.eu/deliverables/; Zarakovitis, C.C., Ni, Q., Maximizing energy efficiency in multiuser multicarrier broadband wireless systems: Convex relaxation and global optimization techniques IEEE Trans. Veh. Technol, 65 (7), pp. 5275-5286. , Jul 2016; Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E., On the lambert w function (1999) Adv. Compu. Math, pp. 329-359; Ryu SDN Controller, , https://osrg.github.io/ryu/; Jain's Fairness Index, , https://en.wikipedia.org/wiki/Fairness_measure; Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V.C.M., Hanzo, L., Energy efficient subchannel and power allocation for the software defined heterogeneous vlc and rf networks (2018) IEEE J. Sel. Areas Commun., 36 (3), pp. 658-670. , Mar
PY - 2020
Y1 - 2020
N2 - To improve data speed and reliability, hybrid wireless networks combine two different Radio Access Technologies (RATs), such as Visible Light Communications (VLC), millimetre wave (mmWave), Wireless Fidelity (WiFi), 4G Long Term Evolution (LTE), etc. The Internet of Radio Light (IoRL) is a cutting-edge system paradigm to combine three RATs for taking advantage the vast VLC and mmWave spectrum with the ubiquitous coverage of WiFi. In this respect, this work introduces a new convex optimisation-based solution method to optimise the three-dimensional (3D) Access Point Assignment (APA) problem of the IoRL system under individual user positioning, priority and minimum Quality-of-Service (QoS) constraints. We use both the IoRL real-world testbed and large-scale Maltab simulations to evaluate that our solution converges in linear time, and attains higher throughput-vs-fairness trade-off than existing efforts. © 2020 IEEE.
AB - To improve data speed and reliability, hybrid wireless networks combine two different Radio Access Technologies (RATs), such as Visible Light Communications (VLC), millimetre wave (mmWave), Wireless Fidelity (WiFi), 4G Long Term Evolution (LTE), etc. The Internet of Radio Light (IoRL) is a cutting-edge system paradigm to combine three RATs for taking advantage the vast VLC and mmWave spectrum with the ubiquitous coverage of WiFi. In this respect, this work introduces a new convex optimisation-based solution method to optimise the three-dimensional (3D) Access Point Assignment (APA) problem of the IoRL system under individual user positioning, priority and minimum Quality-of-Service (QoS) constraints. We use both the IoRL real-world testbed and large-scale Maltab simulations to evaluate that our solution converges in linear time, and attains higher throughput-vs-fairness trade-off than existing efforts. © 2020 IEEE.
KW - Access point assignment
KW - hybrid network access
KW - load balancing
KW - optimisation analysis
KW - software-defined network
KW - Combines
KW - Convex optimization
KW - Economic and social effects
KW - Light
KW - Long Term Evolution (LTE)
KW - Millimeter waves
KW - Quality of service
KW - Rats
KW - Visible light communication
KW - Wireless local area networks (WLAN)
KW - Cutting-edge systems
KW - Hybrid wireless networks
KW - Quality of Service constraints
KW - Radio access technologies
KW - Threedimensional (3-d)
KW - Visible light communications (VLC)
KW - Wireless access networks
KW - Wi-Fi
U2 - 10.1109/ICC40277.2020.9148722
DO - 10.1109/ICC40277.2020.9148722
M3 - Conference paper
Y2 - 7 June 2020
ER -