Home > Research > Publications & Outputs > Trade-off between morphological convergence and...
View graph of relations

Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Emmanuel Corse
  • Caroline Costedoat
  • Nicolas Pech
  • Rémi Chappaz
  • Jonathan Grey
  • André Gilles
Close
Article number26
<mark>Journal publication date</mark>10/2009
<mark>Journal</mark>Frontiers in Zoology
Issue number1
Volume6
Number of pages14
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Background
The invasive Chondrostoma nasus nasus has colonized part of the distribution area of the protected endemic species Chondrostoma toxostoma toxostoma. This hybrid zone is a complex system where multiple effects such as inter-species competition, bi-directional introgression, strong environmental pressure and so on are combined. Why do sympatric Chondrostoma fish present a unidirectional change in body shape? Is this the result of inter-species interactions and/or a response to environmental effects or the result of trade-offs? Studies focusing on the understanding of a trade-off between multiple parameters are still rare. Although this has previously been done for Cichlid species flock and for Darwin finches, where mouth or beak morphology were coupled to diet and genetic identification, no similar studies have been done for a fish hybrid zone in a river. We tested the correlation between morphology (body and mouth morphology), diet (stable carbon and nitrogen isotopes) and genomic combinations in different allopatric and sympatric populations for a global data set of 1330 specimens. To separate the species interaction effect from the environmental effect in sympatry, we distinguished two data sets: the first one was obtained from a highly regulated part of the river and the second was obtained from specimens coming from the less regulated part.

Results
The distribution of the hybrid combinations was different in the two part of the sympatric zone, whereas all the specimens presented similar overall changes in body shape and in mouth morphology. Sympatric specimens were also characterized by a larger diet behavior variance than reference populations, characteristic of an opportunistic diet. No correlation was established between the body shape (or mouth deformation) and the stable isotope signature.

Conclusion
The Durance River is an untamed Mediterranean river despite the presence of numerous dams that split the river from upstream to downstream. The sympatric effect on morphology and the large diet behavior range can be explained by a tendency toward an opportunistic behavior of the sympatric specimens. Indeed, the similar response of the two species and their hybrids implied an adaptation that could be defined as an alternative trade-off that underline the importance of epigenetics mechanisms for potential success in a novel environment.