Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 2.73 MB, PDF document
Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License
Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - TWEETHER Future Generation W-band backhaul and access network infrastructure and technology
AU - Paoloni, Claudio
AU - Magne, Francois
AU - Andre, Frederic
AU - Begaud, Xavier
AU - Krozer, Viktor
AU - Marilier, Marc
AU - Ramirez, Antonio
AU - Vilar, Ruth
AU - Zimmerman, Ralph
N1 - ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2017/7/17
Y1 - 2017/7/17
N2 - Point to multipoint (PmP) distribution at millimeter wave is a frontier so far not yet crossed due to the formidable technological challenge that the high atmospheric attenuation poses. The transmission power at level of tens of Watts required at millimeter wave for a reference range of 1 km is not available by any commercial or laboratory solid state devices. However, the availability of PmP with multigigabit data rate is pivotal for the new high density small cell networks for 4G and 5G and to solve the digital divide in areas where fiber is not convenient or possible to be deployed. In this paper, the advancements of the novel approach proposed by the EU Horizon 2020 TWEETHER project to create the first and fastest outdoor W-band (92 – 95 GHz) PmP wireless network are described. For the first time a new generation W-band traveling wave tube high power amplifier is introduced in the transmission hub to provide the enabling power for a wide area distribution.
AB - Point to multipoint (PmP) distribution at millimeter wave is a frontier so far not yet crossed due to the formidable technological challenge that the high atmospheric attenuation poses. The transmission power at level of tens of Watts required at millimeter wave for a reference range of 1 km is not available by any commercial or laboratory solid state devices. However, the availability of PmP with multigigabit data rate is pivotal for the new high density small cell networks for 4G and 5G and to solve the digital divide in areas where fiber is not convenient or possible to be deployed. In this paper, the advancements of the novel approach proposed by the EU Horizon 2020 TWEETHER project to create the first and fastest outdoor W-band (92 – 95 GHz) PmP wireless network are described. For the first time a new generation W-band traveling wave tube high power amplifier is introduced in the transmission hub to provide the enabling power for a wide area distribution.
KW - milllimeter waves
KW - TWT
KW - access
KW - backhaul
KW - W-band
KW - Point to multipoint
KW - 5G
U2 - 10.1109/EuCNC.2017.7980684
DO - 10.1109/EuCNC.2017.7980684
M3 - Conference contribution/Paper
SN - 9781538638743
BT - European Conference on Networks and Communications (EuCNC 2017)
PB - IEEE
T2 - European Conference on Networks and Communications (EuCNC 2017)
Y2 - 11 June 2017 through 15 June 2017
ER -