Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Conference contribution/Paper › peer-review
}
TY - GEN
T1 - Type systems for the masses
T2 - deriving soundness proofs and efficient checkers
AU - Grewe, Sylvia
AU - Erdweg, Sebastian
AU - Wittmann, Pascal
AU - Mezini, Ermira
PY - 2015/10/23
Y1 - 2015/10/23
N2 - The correct definition and implementation of non-trivial type systems is difficult and requires expert knowledge, which is not available to developers of domain-specific languages (DSLs) in practice. We propose Veritas, a workbench that simplifies the development of sound type systems. Veritas provides a single, high-level specification language for type systems, from which it automatically tries to derive soundness proofs and efficient and correct type-checking algorithms. For verification, Veritas combines off-the-shelf automated first-order theorem provers with automated proof strategies specific to type systems. For deriving efficient type checkers, Veritas provides a collection of optimization strategies whose applicability to a given type system is checked through verification on a case-by-case basis. We have developed a prototypical implementation of Veritas and used it to verify type soundness of the simply-typed lambda calculus and of parts of typed SQL. Our experience suggests that many of the individual verification steps can be automated and, in particular, that a high degree of automation is possible for type systems of DSLs.
AB - The correct definition and implementation of non-trivial type systems is difficult and requires expert knowledge, which is not available to developers of domain-specific languages (DSLs) in practice. We propose Veritas, a workbench that simplifies the development of sound type systems. Veritas provides a single, high-level specification language for type systems, from which it automatically tries to derive soundness proofs and efficient and correct type-checking algorithms. For verification, Veritas combines off-the-shelf automated first-order theorem provers with automated proof strategies specific to type systems. For deriving efficient type checkers, Veritas provides a collection of optimization strategies whose applicability to a given type system is checked through verification on a case-by-case basis. We have developed a prototypical implementation of Veritas and used it to verify type soundness of the simply-typed lambda calculus and of parts of typed SQL. Our experience suggests that many of the individual verification steps can be automated and, in particular, that a high degree of automation is possible for type systems of DSLs.
U2 - 10.1145/2814228.2814239
DO - 10.1145/2814228.2814239
M3 - Conference contribution/Paper
SN - 9781450336888
SP - 137
EP - 150
BT - Onward! 2015 2015 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software (Onward!)
PB - ACM
CY - New York
ER -