Final published version
Research output: Contribution to Journal/Magazine › Review article › peer-review
Research output: Contribution to Journal/Magazine › Review article › peer-review
}
TY - JOUR
T1 - UK land use and soil carbon sequestration
AU - Ostle, N. J.
AU - Levy, P. E.
AU - Evans, C. D.
AU - Smith, P.
PY - 2009/12/1
Y1 - 2009/12/1
N2 - This review explores the role of land use and land use change as a determinant of the soil's ability to sequester and store carbon in the UK. Over 95 percent of the UK land carbon stock is located in soils which are subjected to a range of land uses and global changes. Land use change can result in rapid soil loss of carbon from peatlands, grasslands, plantation forest and native woodland. Soil carbon accumulates more slowly (decadal) but gains can be made when croplands are converted to grasslands, plantation forest or native woodland. The need for land for food production and renewable forms of energy could have considerable influence on UK soil carbon storage in the future. There is a need to recognise the risk of soil carbon losses occurring when land use change to increase carbon storage is offset by compensatory land use conversions elsewhere that result in net carbon release. The protection of peatland and other organic soil carbon stocks, and the management of cropland, grassland and forest soils to increase carbon sequestration, will be crucial to the maintenance of the UK carbon balance. It will be necessary to develop policy to balance trade-offs between soil carbon gains with other land use priorities. These include the sustainable production of food, bio-energy and fibre crops and livestock, water quality and hydrology, greenhouse gas emission control and waste management, all of which are underpinned by the soil.
AB - This review explores the role of land use and land use change as a determinant of the soil's ability to sequester and store carbon in the UK. Over 95 percent of the UK land carbon stock is located in soils which are subjected to a range of land uses and global changes. Land use change can result in rapid soil loss of carbon from peatlands, grasslands, plantation forest and native woodland. Soil carbon accumulates more slowly (decadal) but gains can be made when croplands are converted to grasslands, plantation forest or native woodland. The need for land for food production and renewable forms of energy could have considerable influence on UK soil carbon storage in the future. There is a need to recognise the risk of soil carbon losses occurring when land use change to increase carbon storage is offset by compensatory land use conversions elsewhere that result in net carbon release. The protection of peatland and other organic soil carbon stocks, and the management of cropland, grassland and forest soils to increase carbon sequestration, will be crucial to the maintenance of the UK carbon balance. It will be necessary to develop policy to balance trade-offs between soil carbon gains with other land use priorities. These include the sustainable production of food, bio-energy and fibre crops and livestock, water quality and hydrology, greenhouse gas emission control and waste management, all of which are underpinned by the soil.
KW - Climate change
KW - CO
KW - Greenhouse gases
KW - Renewable energy
KW - Soil carbon
KW - SOM
U2 - 10.1016/j.landusepol.2009.08.006
DO - 10.1016/j.landusepol.2009.08.006
M3 - Review article
AN - SCOPUS:73549095783
VL - 26
JO - Land Use Policy
JF - Land Use Policy
SN - 0264-8377
IS - SUPPL. 1
ER -