Home > Research > Publications & Outputs > Uncovering drivers of juvenile coral density fo...


Text available via DOI:

View graph of relations

Uncovering drivers of juvenile coral density following mass bleaching

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>1/08/2019
<mark>Journal</mark>Coral Reefs
Issue number4
Number of pages13
Pages (from-to)637-649
Publication StatusPublished
Early online date6/03/19
<mark>Original language</mark>English


Thermally induced mass coral bleaching is globally responsible for major losses of coral cover. Coral recovery from mass coral disturbances like the 2016 bleaching event hinges on successful recruitment of new coral colonies to the existing population. Juvenile corals as a life history stage represent survival and growth of new recruits. As such, habitat preferences of juvenile corals and how environmental parameters interact to drive coral recovery following a mass bleaching disturbance are important research areas. To expand our knowledge on this topic, we compared juvenile coral densities from before the 2016 bleaching event with those after the disturbance and identified abiotic and biotic characteristics of 21 reefs in the inner Seychelles that predict juvenile coral densities. Our results show that following the 2016 bleaching event, juvenile coral densities were significantly reduced by about 70%, with a particularly large decline in juvenile Acropora. Macroalgae present a large obstacle to survival of juvenile corals in a post-bleaching setting, but their influence varies as a function of herbivore biomass, reef structure, and reef type. Higher biomass of herbivorous fish weakens the negative effect of macroalgae on juvenile corals, and structural complexity on granitic reefs is a strong positive predictor of juvenile coral density. However, structural complexity on carbonate or patch reefs was negatively related to juvenile coral density, highlighting the importance of considering interactive terms in analyses. Our study emphasises the importance of habitat for juvenile coral abundance at both fine and seascape scales, adding to the literature on drivers of reef rebound potential following severe coral bleaching.