Home > Research > Publications & Outputs > Understanding the Chemical Shifts of Aqueous El...

Electronic data

  • AuthorAccepted

    Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02260

    Accepted author manuscript, 610 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Understanding the Chemical Shifts of Aqueous Electrolyte Species Adsorbed in Carbon Nanopores

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>29/09/2022
<mark>Journal</mark>The Journal of Physical Chemistry Letters
Issue number38
Volume13
Number of pages10
Pages (from-to)8953-8962
Publication StatusPublished
Early online date22/09/22
<mark>Original language</mark>English

Abstract

Interfaces between aqueous electrolytes and nanoporous carbons are involved in a number of technological applications such as energy storage and capacitive deionization. Nuclear magnetic spectroscopy is a very useful tool to characterize ion adsorption in such systems thanks to its nuclei specificity and the ability to distinguish between ions in the bulk and in pores. We use complementary methods (density functional theory, molecular dynamics simulations, and a mesoscopic model) to investigate the relative importance of various effects on the chemical shifts of adsorbed species: ring currents, ion organization in pores of various sizes, specific ion-carbon interactions, and hydration. We show that ring currents and ion organization are predominant for the determination of chemical shifts in the case of Li ions and hydrogen atoms of water. For the large Rb and Cs ions, the additional effect of the hydration shell should be considered to predict chemical shifts in agreement with experiments.

Bibliographic note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpclett.2c02260