Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - UReslham
T2 - Radar reflectivity inversion for smart agriculture with spatial federated learning over geostationary satellite observations
AU - Jin, Zhengyong
AU - Xu, Xiaolong
AU - Bilal, Muhammad
AU - Wu, Songyu
AU - Lin, Huichao
PY - 2024/6/30
Y1 - 2024/6/30
N2 - The frequent occurrence of severe convective weather has certain adverse effects on the smart agriculture industry. To enhance the prediction of severe convective weather, the inversion model effectively fills radar reflectivity data gaps by leveraging geostationary satellite data, offering more comprehensive and accurate support for meteorological information in smart agriculture systems. Nevertheless, collaborative cross‐regional inversion driven by dispersed radar data faces challenges in efficiency, privacy, and model accuracy. To this end, we employ an U‐shaped residual network with an embedded light hybrid attention mechanism and utilize a federated averaging algorithm for efficient distributed training across multiple devices which could preserve the privacy of data from different locations, thereby improving inversion performance. In addition, to address the unbalanced nature of radar data, a weighted loss function is designed to enhance the model's sensitivity to high radar reflectivity. Experimental results demonstrate that the proposed model exhibits a certain level of improvement in evaluating radar reflectivity inversion performance across different thresholds compared to other models, thus substantiating the superiority of the proposed approach.
AB - The frequent occurrence of severe convective weather has certain adverse effects on the smart agriculture industry. To enhance the prediction of severe convective weather, the inversion model effectively fills radar reflectivity data gaps by leveraging geostationary satellite data, offering more comprehensive and accurate support for meteorological information in smart agriculture systems. Nevertheless, collaborative cross‐regional inversion driven by dispersed radar data faces challenges in efficiency, privacy, and model accuracy. To this end, we employ an U‐shaped residual network with an embedded light hybrid attention mechanism and utilize a federated averaging algorithm for efficient distributed training across multiple devices which could preserve the privacy of data from different locations, thereby improving inversion performance. In addition, to address the unbalanced nature of radar data, a weighted loss function is designed to enhance the model's sensitivity to high radar reflectivity. Experimental results demonstrate that the proposed model exhibits a certain level of improvement in evaluating radar reflectivity inversion performance across different thresholds compared to other models, thus substantiating the superiority of the proposed approach.
KW - deep learning
KW - smart agriculture
KW - spatial federated learning
KW - remote sensing
KW - radar reflectivity
U2 - 10.1111/coin.12684
DO - 10.1111/coin.12684
M3 - Journal article
VL - 40
JO - Computational Intelligence
JF - Computational Intelligence
IS - 3
M1 - e12684
ER -