Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Variation between rice accessions in photosynthetic induction in flag leaves and underlying mechanisms
AU - Acevedo-Siaca, L.G.
AU - Coe, R.
AU - Quick, W.P.
AU - Long, S.P.
PY - 2021/2/24
Y1 - 2021/2/24
N2 - Several breeding initiatives have sought to improve flag leaf performance as its health and physiology are closely correlated to rice yield. Previous studies have described natural variation of photosynthesis for flag leaves; however, none has examined their performance under the non-steady-state conditions that prevail in crop fields. Photosynthetic induction is the transient response of photosynthesis to a change from low to high light. Rice flag leaf photosynthesis was measured in both steady- A nd non-steady-state conditions to characterize natural variation. Between the lowest and highest performing accession, there was a 152% difference for average CO2 assimilation during induction (Crossed D sign300), a 77% difference for average intrinsic water use efficiency during induction (iWUEavg), and a 185% difference for the speed of induction (IT50), indicating plentiful variation. No significant correlation was found between steady- A nd non-steady-state photosynthetic traits. Additionally, measures of neither steady-state nor non-steady-state photosynthesis of flag leaves correlated with the same measures of leaves in the vegetative growth stage, with the exception of iWUEavg. Photosynthetic induction was measured at six [CO2], to determine biochemical and diffusive limitations to photosynthesis in vivo. Photosynthetic induction in rice flag leaves was limited primarily by biochemistry. © 2020 Society for Experimental Biology 2020.
AB - Several breeding initiatives have sought to improve flag leaf performance as its health and physiology are closely correlated to rice yield. Previous studies have described natural variation of photosynthesis for flag leaves; however, none has examined their performance under the non-steady-state conditions that prevail in crop fields. Photosynthetic induction is the transient response of photosynthesis to a change from low to high light. Rice flag leaf photosynthesis was measured in both steady- A nd non-steady-state conditions to characterize natural variation. Between the lowest and highest performing accession, there was a 152% difference for average CO2 assimilation during induction (Crossed D sign300), a 77% difference for average intrinsic water use efficiency during induction (iWUEavg), and a 185% difference for the speed of induction (IT50), indicating plentiful variation. No significant correlation was found between steady- A nd non-steady-state photosynthetic traits. Additionally, measures of neither steady-state nor non-steady-state photosynthesis of flag leaves correlated with the same measures of leaves in the vegetative growth stage, with the exception of iWUEavg. Photosynthetic induction was measured at six [CO2], to determine biochemical and diffusive limitations to photosynthesis in vivo. Photosynthetic induction in rice flag leaves was limited primarily by biochemistry. © 2020 Society for Experimental Biology 2020.
KW - Atmospheric change
KW - crop improvement
KW - flag leaves
KW - food security
KW - natural variation
KW - photosynthetic induction
KW - rice
KW - rice breeding
KW - Rubisco activation
KW - water use efficiency
U2 - 10.1093/jxb/eraa520
DO - 10.1093/jxb/eraa520
M3 - Journal article
VL - 72
SP - 1282
EP - 1294
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
SN - 0022-0957
IS - 4
ER -