We present an adaptive filter model of cerebellar function applied to the calibration of a tactile sensory map to improve the accuracy of directed movements of a robotic manipulator. This is demonstrated using a platform called Bellabot that incorporates an array of biomimetic tactile whiskers, actuated using electro-active polymer artificial muscles, a camera to provide visual error feedback, and a standard industrial robotic manipulator. The algorithm learns to accommodate imperfections in the sensory map that may be as a result of poor manufacturing tolerances or damage to the sensory array. Such an ability is an important pre-requisite for robust tactile robotic systems operating in the real-world for extended periods of time. In this work the sensory maps have been purposely distorted in order to evaluate the performance of the algorithm.