Home > Research > Publications & Outputs > Acceleration in the linear non-scaling fixed-fi...

Links

Text available via DOI:

View graph of relations

Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

Research output: Contribution to journalJournal article

Published
  • S. Machida
  • R. Barlow
  • J.S. Berg
  • N. Bliss
  • R.K. Buckley
  • J.A. Clarke
  • M.K. Craddock
  • R. D'Arcy
  • R. Edgecock
  • J.M. Garland
  • Y. Giboudot
  • P. Goudket
  • S. Griffiths
  • C. Hill
  • S.F. Hill
  • K.M. Hock
  • D.J. Holder
  • M.G. Ibison
  • F. Jackson
  • C. Johnstone
  • J.K. Jones
  • L.B. Jones
  • A. Kalinin
  • E. Keil
  • D.J. Kelliher
  • I.W. Kirkman
  • S. Koscielniak
  • K. Marinov
  • N. Marks
  • B. Martlew
  • P.A. McIntosh
  • J.W. McKenzie
  • F. Méot
  • K.J. Middleman
  • A. Moss
  • B.D. Muratori
  • J. Orrett
  • H.L. Owen
  • J. Pasternak
  • K.J. Peach
  • Y.-N. Rao
  • Y. Saveliev
  • D.J. Scott
  • S.L. Sheehy
  • B.J.A. Shepherd
  • R. Smith
  • S.L. Smith
  • D. Trbojevic
  • T. Weston
  • A. Wheelhouse
  • P.H. Williams
  • A. Wolski
  • T. Yokoi
Close
<mark>Journal publication date</mark>2012
<mark>Journal</mark>Nature physics
Issue number3
Volume8
Number of pages5
Pages (from-to)243-247
Publication StatusPublished
<mark>Original language</mark>English

Abstract

In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.