Home > Research > Publications & Outputs > Acceleration in the linear non-scaling fixed-fi...

Links

Text available via DOI:

View graph of relations

Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

Research output: Contribution to journalJournal articlepeer-review

Published

Standard

Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA. / Machida, S.; Barlow, R.; Berg, J.S.; Bliss, N.; Buckley, R.K.; Clarke, J.A.; Craddock, M.K.; D'Arcy, R.; Edgecock, R.; Garland, J.M.; Giboudot, Y.; Goudket, P.; Griffiths, S.; Hill, C.; Hill, S.F.; Hock, K.M.; Holder, D.J.; Ibison, M.G.; Jackson, F.; Jamison, S.P.; Johnstone, C.; Jones, J.K.; Jones, L.B.; Kalinin, A.; Keil, E.; Kelliher, D.J.; Kirkman, I.W.; Koscielniak, S.; Marinov, K.; Marks, N.; Martlew, B.; McIntosh, P.A.; McKenzie, J.W.; Méot, F.; Middleman, K.J.; Moss, A.; Muratori, B.D.; Orrett, J.; Owen, H.L.; Pasternak, J.; Peach, K.J.; Poole, M.W.; Rao, Y.-N.; Saveliev, Y.; Scott, D.J.; Sheehy, S.L.; Shepherd, B.J.A.; Smith, R.; Smith, S.L.; Trbojevic, D.; Tzenov, S.; Weston, T.; Wheelhouse, A.; Williams, P.H.; Wolski, A.; Yokoi, T.

In: Nature physics, Vol. 8, No. 3, 2012, p. 243-247.

Research output: Contribution to journalJournal articlepeer-review

Harvard

Machida, S, Barlow, R, Berg, JS, Bliss, N, Buckley, RK, Clarke, JA, Craddock, MK, D'Arcy, R, Edgecock, R, Garland, JM, Giboudot, Y, Goudket, P, Griffiths, S, Hill, C, Hill, SF, Hock, KM, Holder, DJ, Ibison, MG, Jackson, F, Jamison, SP, Johnstone, C, Jones, JK, Jones, LB, Kalinin, A, Keil, E, Kelliher, DJ, Kirkman, IW, Koscielniak, S, Marinov, K, Marks, N, Martlew, B, McIntosh, PA, McKenzie, JW, Méot, F, Middleman, KJ, Moss, A, Muratori, BD, Orrett, J, Owen, HL, Pasternak, J, Peach, KJ, Poole, MW, Rao, Y-N, Saveliev, Y, Scott, DJ, Sheehy, SL, Shepherd, BJA, Smith, R, Smith, SL, Trbojevic, D, Tzenov, S, Weston, T, Wheelhouse, A, Williams, PH, Wolski, A & Yokoi, T 2012, 'Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA', Nature physics, vol. 8, no. 3, pp. 243-247. https://doi.org/10.1038/nphys2179

APA

Machida, S., Barlow, R., Berg, J. S., Bliss, N., Buckley, R. K., Clarke, J. A., Craddock, M. K., D'Arcy, R., Edgecock, R., Garland, J. M., Giboudot, Y., Goudket, P., Griffiths, S., Hill, C., Hill, S. F., Hock, K. M., Holder, D. J., Ibison, M. G., Jackson, F., ... Yokoi, T. (2012). Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA. Nature physics, 8(3), 243-247. https://doi.org/10.1038/nphys2179

Vancouver

Machida S, Barlow R, Berg JS, Bliss N, Buckley RK, Clarke JA et al. Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA. Nature physics. 2012;8(3):243-247. https://doi.org/10.1038/nphys2179

Author

Machida, S. ; Barlow, R. ; Berg, J.S. ; Bliss, N. ; Buckley, R.K. ; Clarke, J.A. ; Craddock, M.K. ; D'Arcy, R. ; Edgecock, R. ; Garland, J.M. ; Giboudot, Y. ; Goudket, P. ; Griffiths, S. ; Hill, C. ; Hill, S.F. ; Hock, K.M. ; Holder, D.J. ; Ibison, M.G. ; Jackson, F. ; Jamison, S.P. ; Johnstone, C. ; Jones, J.K. ; Jones, L.B. ; Kalinin, A. ; Keil, E. ; Kelliher, D.J. ; Kirkman, I.W. ; Koscielniak, S. ; Marinov, K. ; Marks, N. ; Martlew, B. ; McIntosh, P.A. ; McKenzie, J.W. ; Méot, F. ; Middleman, K.J. ; Moss, A. ; Muratori, B.D. ; Orrett, J. ; Owen, H.L. ; Pasternak, J. ; Peach, K.J. ; Poole, M.W. ; Rao, Y.-N. ; Saveliev, Y. ; Scott, D.J. ; Sheehy, S.L. ; Shepherd, B.J.A. ; Smith, R. ; Smith, S.L. ; Trbojevic, D. ; Tzenov, S. ; Weston, T. ; Wheelhouse, A. ; Williams, P.H. ; Wolski, A. ; Yokoi, T. / Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA. In: Nature physics. 2012 ; Vol. 8, No. 3. pp. 243-247.

Bibtex

@article{f271f716e4e648baa274173c1cc73b62,
title = "Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA",
abstract = "In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a {\textquoteleft}scaling{\textquoteright} principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.",
author = "S. Machida and R. Barlow and J.S. Berg and N. Bliss and R.K. Buckley and J.A. Clarke and M.K. Craddock and R. D'Arcy and R. Edgecock and J.M. Garland and Y. Giboudot and P. Goudket and S. Griffiths and C. Hill and S.F. Hill and K.M. Hock and D.J. Holder and M.G. Ibison and F. Jackson and S.P. Jamison and C. Johnstone and J.K. Jones and L.B. Jones and A. Kalinin and E. Keil and D.J. Kelliher and I.W. Kirkman and S. Koscielniak and K. Marinov and N. Marks and B. Martlew and P.A. McIntosh and J.W. McKenzie and F. M{\'e}ot and K.J. Middleman and A. Moss and B.D. Muratori and J. Orrett and H.L. Owen and J. Pasternak and K.J. Peach and M.W. Poole and Y.-N. Rao and Y. Saveliev and D.J. Scott and S.L. Sheehy and B.J.A. Shepherd and R. Smith and S.L. Smith and D. Trbojevic and S. Tzenov and T. Weston and A. Wheelhouse and P.H. Williams and A. Wolski and T. Yokoi",
year = "2012",
doi = "10.1038/nphys2179",
language = "English",
volume = "8",
pages = "243--247",
journal = "Nature physics",
issn = "1745-2473",
publisher = "Nature Publishing Group",
number = "3",

}

RIS

TY - JOUR

T1 - Acceleration in the linear non-scaling fixed-field alternating-gradient accelerator EMMA

AU - Machida, S.

AU - Barlow, R.

AU - Berg, J.S.

AU - Bliss, N.

AU - Buckley, R.K.

AU - Clarke, J.A.

AU - Craddock, M.K.

AU - D'Arcy, R.

AU - Edgecock, R.

AU - Garland, J.M.

AU - Giboudot, Y.

AU - Goudket, P.

AU - Griffiths, S.

AU - Hill, C.

AU - Hill, S.F.

AU - Hock, K.M.

AU - Holder, D.J.

AU - Ibison, M.G.

AU - Jackson, F.

AU - Jamison, S.P.

AU - Johnstone, C.

AU - Jones, J.K.

AU - Jones, L.B.

AU - Kalinin, A.

AU - Keil, E.

AU - Kelliher, D.J.

AU - Kirkman, I.W.

AU - Koscielniak, S.

AU - Marinov, K.

AU - Marks, N.

AU - Martlew, B.

AU - McIntosh, P.A.

AU - McKenzie, J.W.

AU - Méot, F.

AU - Middleman, K.J.

AU - Moss, A.

AU - Muratori, B.D.

AU - Orrett, J.

AU - Owen, H.L.

AU - Pasternak, J.

AU - Peach, K.J.

AU - Poole, M.W.

AU - Rao, Y.-N.

AU - Saveliev, Y.

AU - Scott, D.J.

AU - Sheehy, S.L.

AU - Shepherd, B.J.A.

AU - Smith, R.

AU - Smith, S.L.

AU - Trbojevic, D.

AU - Tzenov, S.

AU - Weston, T.

AU - Wheelhouse, A.

AU - Williams, P.H.

AU - Wolski, A.

AU - Yokoi, T.

PY - 2012

Y1 - 2012

N2 - In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

AB - In a fixed-field alternating-gradient (FFAG) accelerator, eliminating pulsed magnet operation permits rapid acceleration to synchrotron energies, but with a much higher beam-pulse repetition rate. Conceived in the 1950s, FFAGs are enjoying renewed interest, fuelled by the need to rapidly accelerate unstable muons for future high-energy physics colliders. Until now a ‘scaling’ principle has been applied to avoid beam blow-up and loss. Removing this restriction produces a new breed of FFAG, a non-scaling variant, allowing powerful advances in machine characteristics. We report on the first non-scaling FFAG, in which orbits are compacted to within 10 mm in radius over an electron momentum range of 12–18 MeV/c. In this strictly linear-gradient FFAG, unstable beam regions are crossed, but acceleration via a novel serpentine channel is so rapid that no significant beam disruption is observed. This result has significant implications for future particle accelerators, particularly muon and high-intensity proton accelerators.

U2 - 10.1038/nphys2179

DO - 10.1038/nphys2179

M3 - Journal article

VL - 8

SP - 243

EP - 247

JO - Nature physics

JF - Nature physics

SN - 1745-2473

IS - 3

ER -