12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Alfvén: magnetosphere-ionosphere connection exp...
View graph of relations

« Back

Alfvén: magnetosphere-ionosphere connection explorers

Research output: Contribution to journalJournal article

Published

  • M. Berthomier
  • A. N. Fazakerley
  • C. Forsyth
  • R. Pottelette
  • O. Alexandrova
  • A. Anastasiadis
  • A. Aruliah
  • P.-L. Blelly
  • C. Briand
  • R. Bruno
  • P. Canu
  • B. Cecconi
  • T. Chust
  • I. Daglis
  • J. Davies
  • M. Dunlop
  • D. Fontaine
  • V. Génot
  • Bjorn Gustavsson
  • G. Haerendel
  • M. Hamrin
  • S. Hess
  • D. Kataria
  • K. Kauristie
  • S. Kemble
  • Y. Khotyaintsev
  • H. Koskinen
  • L. Lamy
  • B. S. Lanchester
  • P. Louarn
  • E. Lucek
  • R. Lundin
  • M. Maksimovic
  • J. Manninen
  • A. Marchaudon
  • O. Marghitu
  • G. Marklund
  • S. Milan
  • J. Moen
  • F. Mottez
  • H. Nilsson
  • N. Ostgaard
  • C. J. Owen
  • M. Parrot
  • A. Pedersen
  • C. Perry
  • J.-L. Pinçon
  • F. Pitout
  • T. Pulkkinen
  • I.J. Rae
  • L. Rezeau
  • A. Roux
  • I. Sandahl
  • I. Sandberg
  • E. Turunen
  • J. Vogt
  • A. Walsh
  • C. E. J. Watt
  • M. Yamauchi
  • P. Zarka
  • I. Zouganelis
Journal publication date3/05/2012
JournalExperimental Astronomy
Journal number2-3
Volume33
Number of pages45
Pages445-489
Early online date27/12/11
Original languageEnglish

Abstract

The aurorae are dynamic, luminous displays that grace the night skies of Earth’s high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth’s atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The “ideal magnetohydrodynamics” description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfvén concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.

Bibliographic note

Prof Ingrid Sandahl passed away on May 5, 2011. The original publication is available at www.springerlink.com