12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Determining E. coli burden on pasture in a head...
View graph of relations

« Back

Determining E. coli burden on pasture in a headwater catchment: combined field and modelling approach

Research output: Contribution to journalJournal article

Published

Journal publication date08/2012
JournalEnvironment International
Volume43
Number of pages7
Pages6-12
Early online date22/03/12
Original languageEnglish

Abstract

Empirical monitoring studies of catchment-scale Escherichia coli burden to land from agriculture are scarce. This is not surprising given the complexity associated with the temporal and spatial heterogeneity in the excretion of livestock faecal deposits and variability in microbial content of faeces. However, such information is needed to appreciate better how land management and landscape features impact on water quality draining agricultural landscapes. The aim of this study was to develop and test a field-based protocol for determining the burden of E. coli in a small headwater catchment in the UK. Predictions of E. coli burden using an empirical model based on previous best estimates of excretion and shedding rates were also evaluated against observed data. The results indicated that an empirical model utilising key parameters was able to satisfactorily predict E. coli burden on pasture most of the time, with 89% of observed values falling within the minimum and maximum range of predicted values. In particular, the overall temporal pattern of E. coli burden on pasture is captured by the model. The observed and predicted values recorded a disagreement of > 1 order of magnitude on only one of the nine sampling dates throughout an annual period. While a first approximation of E. coli burden to land, this field-based protocol represents one of the first comprehensive approaches for providing a real estimate of a dynamic microbial reservoir at the headwater catchment scale and highlights the utility of a simple dynamic empirical model for a more economical prediction of catchment-scale E. coli burden.