Home > Research > Publications & Outputs > Quantum-interference-enhanced thermoelectricity...

Associated organisational unit

Electronic data

  • paper_v9

    Rights statement: This is the author’s version of a work that was accepted for publication in Comptes Rendus Physique. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Comptes Rendus Physique, 17, 10, 2016 DOI: 10.1016/j.crhy.2016.08.003

    Accepted author manuscript, 652 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Quantum-interference-enhanced thermoelectricity in single molecules and molecular films

Research output: Contribution to journalJournal article

Published
<mark>Journal publication date</mark>12/2016
<mark>Journal</mark>Comptes Rendus Physique
Issue number10
Volume17
Number of pages12
Pages (from-to)1084-1095
Publication statusPublished
Early online date18/08/16
Original languageEnglish

Abstract

We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient T(E)T(E), (b) creating structures with delta-function-like transmission coefficients and (c) utilising step-like features in T(E)T(E). To achieve high performance, we suggest that the latter may be the most fruitful, since it is less susceptible to inhomogeneous broadening. For the purpose of extrapolating thermoelectric properties of single or few molecules to monolayer molecular films, we also discuss the relevance of the conductance-weighted average Seebeck coefficient.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Comptes Rendus Physique. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Comptes Rendus Physique, 17, 10, 2016 DOI: 10.1016/j.crhy.2016.08.003