Home > Research > Publications & Outputs > Solution-Processed Neodymium Oxide/ZnO Thin-Fil...

Electronic data

  • Esro et al_Nd2O3-REVISION_CLEAR

    Rights statement: This is the peer reviewed version of the following article: M. Esro, O. Kolosov, V. Stolojan, P. J. Jones, W. I. Milne, G. Adamopoulos, Adv. Electron. Mater. 2017, 1700025 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/aelm.201700025/abstract This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.

    Accepted author manuscript, 741 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Solution-Processed Neodymium Oxide/ZnO Thin-Film Transistors with Electron Mobility in Excess of 65 cm V−1 s−1

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number1700025
<mark>Journal publication date</mark>04/2017
<mark>Journal</mark>Advanced Electronic Materials
Issue number4
Volume3
Publication StatusPublished
Early online date15/03/17
<mark>Original language</mark>English

Abstract

This work reports on solution processed Nd2O3 thin films that are deposited under ambient conditions at moderate temperatures of about 400 °C and their implementation as gate dielectrics in thin film transistors employing solution processed ZnO semiconducting channels is also demonstrated. The optical, dielectric, electric, structural, surface, and interface properties of Nd2O3 films are investigated using a wide range of characterization techniques that reveal smooth Nd2O3 films of cubic structure, wide bandgap (6 eV), high-k (11), and low leakage currents (<0.5 nA cm−2). Thin film transistors (TFTs) using ZnO channels show excellent characteristics, such as high electron mobility, in excess of 65 cm2 V−1 s−1, high on/off current ratio in the range between 106 and 107, and negligible hysteresis. The devices demonstrate excellent constant bias stress and air stability air, i.e., only a small decrease of the electron mobility and threshold voltage (<12%). In addition, the excellent uniformity and homogeneity that is demonstrated combined with the relatively low deposition temperature (compared with those used with the vast majority of the vacuum based techniques employed) in ambient air on glass substrates indicates the potential for the rapid development of metal oxide-based TFTs employing gate dielectrics also grown from solutions at low manufacturing cost.

Bibliographic note

This is the peer reviewed version of the following article: M. Esro, O. Kolosov, V. Stolojan, P. J. Jones, W. I. Milne, G. Adamopoulos, Adv. Electron. Mater. 2017, 1700025 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/aelm.201700025/abstract This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.