We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Symmetric maximum kernel likelihood estimation.
View graph of relations

« Back

Symmetric maximum kernel likelihood estimation.

Research output: Contribution to journalJournal article


Journal publication date02/2011
JournalJournal of Statistical Computation and Simulation
Number of pages14
Original languageEnglish


We introduce an estimator for the population mean based on maximizing likelihoods formed from a symmetric kernel density estimate. Due to these origins, we have dubbed the estimator the symmetric maximum kernel likelihood estimate (smkle). A speedy computational method to compute the smkle based on binning is implemented in a simulation study which shows that the smkle at an optimal bandwidth is decidedly superior in terms of efficiency to the sample mean and other measures of location for heavy tailed symmetric distributions. An empirical rule and a computational method to estimate this optimal bandwidth are developed and used to construct bootstrap confidence intervals for the population mean. We show that the intervals have approximately nominal coverage and have significantly smaller average width than the corresponding intervals for other measures of location.