12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The development of temperature fields and powde...
View graph of relations

« Back

The development of temperature fields and powder flow during laser direct metal deposition wall growth

Research output: Contribution to journalJournal article

Published

Journal publication date05/2004
JournalProceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Journal number5
Volume218
Number of pages11
Pages531-541
Original languageEnglish

Abstract

The additive manufacturing technique of laser direct metal deposition (DMD) has had an impact in rapid prototyping, tooling and small-volume manufacturing applications. Components are built from metallic materials that are deposited by the continuous injection of powder into a moving melt pool, created by a defocused laser beam. The size of the melt pool, the temperature distributions around it and the powder flux are critical in determining process characteristics such as deposition rate. In this paper, the effects that changes in the distance between the laser deposition head and the melt pool have on these factors as a part is built using a coaxial powder feeding system are considered Via a two-part analytical model. A heat flow model considers three-dimensional temperature distributions due to a moving Gaussian heat source in a finite volume and a simple mass-flow model considers changes in powder concentration with distance from the deposition head. The model demonstrates the effect of adjusting the melt pool standoff in different ways on melt pool and powder flow characteristics as a DMD structure is built, and hence allows the effect on build rate to be predicted. Its validity is verified by comparison with a series of 316L stainless steel walls, built using different standoff adjustment methods. The model is found to be able to explain the dimensional characteristics found.