12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > The uncertainty of storm season changes
View graph of relations

« Back

The uncertainty of storm season changes: quantifying the uncertainty of autocovariance changepoints

Research output: Contribution to journalJournal article

Published

Journal publication date2014
JournalTechnometrics
Early online date27/03/14
Original languageEnglish

Abstract

In oceanography, there is interest in determining storm season changes for logistical reasons such as equipment maintenance scheduling. In particular, there is interest in capturing the uncertainty associated with these changes in terms of the number and location of them. Such changes are associated with autocovariance changes. This paper proposes a framework to quantify the uncertainty of autocovariance changepoints in time series motivated by this oceanographic application. More specifically, the framework considers time series under the Locally Stationary Wavelet framework, deriving a joint density for scale processes in the raw wavelet periodogram. By embedding this density within a Hidden Markov Model framework, we consider changepoint characteristics under this multiscale setting. Such a methodology allows us to model changepoints and their uncertainty for a wide range of models, including piecewise second-order stationary processes, for example piecewise Moving Average processes.