Home > Research > Researchers > Ryan Hossaini

Current Postgraduate Research Students

Ryan Hossaini supervises 3 postgraduate research students. If these students have produced research profiles, these are listed below:

Student research profiles

Show all »

View graph of relations

Dr Ryan Hossaini

NERC Senior Research Fellow

Ryan Hossaini

LEC Building



Research Interests

Ryan's research examines long-term changes in the chemistry and composition of Earth’s atmosphere and how such changes may influence climate, air quality and the ozone layer. This involves the development and application of state-of-the-art numerical models, run on supercomputers, which simulate the past, present and future state of the atmosphere. His recent work has focussed on:
  • Ozone-Depleting Substances (ODSs) and Recovery of the Ozone Layer. Despite production of many long-lived ODSs (e.g. CFCs) being controlled by the UN Montreal Protocol and its amendments, ozone depletion remains a persistent environmental issue. Our research examines trends in the atmosphere abundance of so-called Very Short-Lived Substances (VSLS) – a class of ODSs not controlled by the Protocol – whose emissions have been increasing in recent years. Our recent Nature Comms. paper highlighted the increasing threat to stratospheric ozone from anthropogenic VSLS emissions. See also our recent Nature reviews on ODSs and ozone layer recovery.
  • Ozone Chemistry-Climate Interactions. In the stratosphere, ozone prevents damaging levels of UV radiation reaching Earth’s surface. Ozone also absorbs terrestrial IR radiation and is therefore a greenhouse gas. Changes in can ozone exert a significant and complex influence on climate. This research seeks to understand chemical drives of ozone changes, particularly in the climate-relevant upper troposphere/lower stratosphere, and the radiative implications. See our recent Nature Geoscience paper on the efficiency of halogenated VSLS at influencing climate through ozone loss in the lower stratosphere.
  • Tropospheric Chlorine Impacts. Chlorine atoms are highly reactive in the troposphere and are therefore a potentially important atmospheric oxidant, influencing the lifetime of greenhouse gases (e.g. methane) and a range of volatile organic compounds. Despite this, the tropospheric abundance of chlorine atoms is very poorly known. Our work seeks to understand processes governing the release and recycling of chlorine in the troposphere and we are building models to simulate and provide insight into such processes.
  • Data-Driven Clustering Methods for Climate Science. This work is supported by the EPSRC to explore the use of clustering in the analysis of large climate model datasets from model intercomparison projects. Our recent work has shown that clustering can potentially provide powerful insight into such data, and may help characterise areas of uncertainty across models.

Web Links

Ryan's personal page is here.

Career Details

Ryan is currently a NERC Independent Research Fellow based in the Lancaster Environment Centre. He has previously held postdoctoral positions in the Chemistry Departments of the University of York and the University of Cambridge, and also in the Institute for Climate and Atmospheric Science at the University of Leeds.


  • Ph.D. Global Atmospheric Chemistry Modelling (awarded Nov 2012).
  • M.Res Physics of the Earth and Atmosphere (awarded 2008).
  • B.Sc. (Hons) Environmental Chemistry (awarded 2007).

View all (39) »