Rights statement: This article has been accepted for publication in Quarterly Journal of Mathematics Published by Oxford University Press.
Submitted manuscript, 197 KB, PDF document
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A chain condition for operators from C(K)-spaces
AU - Hart, Klaas Pieter
AU - Kania, Tomasz
AU - Kochanek, Tomasz
N1 - This article has been accepted for publication in Quarterly Journal of Mathematics Published by Oxford University Press.
PY - 2014/6/26
Y1 - 2014/6/26
N2 - We introduce a chain condition (bishop), defined for operators acting on C(K)-spaces, which is intermediate between weak compactness and having weakly compactly generated range. It is motivated by Pe{\l}czy\'nski's characterisation of weakly compact operators on C(K)-spaces. We prove that if K is extremally disconnected and X is a Banach space then an operator T : C(K) -> X is weakly compact if and only if it satisfies (bishop) if and only if the representing vector measure of T satisfies an analogous chain condition. As a tool for proving the above-mentioned result, we derive a topological counterpart of Rosenthal's lemma. We exhibit several compact Hausdorff spaces K for which the identity operator on C(K) satisfies (bishop), for example both locally connected compact spaces having countable cellularity and ladder system spaces have this property. Using a Ramsey-type theorem, due to Dushnik and Miller, we prove that the collection of operators on a C(K)-space satisfying (bishop) forms a closed left ideal of B(C(K)).
AB - We introduce a chain condition (bishop), defined for operators acting on C(K)-spaces, which is intermediate between weak compactness and having weakly compactly generated range. It is motivated by Pe{\l}czy\'nski's characterisation of weakly compact operators on C(K)-spaces. We prove that if K is extremally disconnected and X is a Banach space then an operator T : C(K) -> X is weakly compact if and only if it satisfies (bishop) if and only if the representing vector measure of T satisfies an analogous chain condition. As a tool for proving the above-mentioned result, we derive a topological counterpart of Rosenthal's lemma. We exhibit several compact Hausdorff spaces K for which the identity operator on C(K) satisfies (bishop), for example both locally connected compact spaces having countable cellularity and ladder system spaces have this property. Using a Ramsey-type theorem, due to Dushnik and Miller, we prove that the collection of operators on a C(K)-space satisfying (bishop) forms a closed left ideal of B(C(K)).
U2 - 10.1093/qmath/hat006
DO - 10.1093/qmath/hat006
M3 - Journal article
VL - 65
SP - 703
EP - 715
JO - The Quarterly Journal of Mathematics
JF - The Quarterly Journal of Mathematics
SN - 0033-5606
IS - 2
ER -