A foundational theorem of Laman provides a counting characterization of the finite simple graphs whose generic bar-joint frameworks in two dimensions are infinitesimally rigid. Recently a Laman-type characterization was obtained for frameworks in three dimensions whose vertices are constrained to concentric spheres or to concentric cylinders. Noting that the plane and the sphere have 3 independent locally tangential infinitesimal motions while the cylinder has 2, we obtain here a Laman-type theorem for frameworks on algebraic surfaces with a 1-dimensional space of tangential motions. Such surfaces include the torus, helicoids, and surfaces of revolution. The relevant class of graphs are the (2,1)-tight graphs, in contrast to (2,3)-tightness for the plane/sphere and (2,2)-tightness for the cylinder. The proof uses a new characterization of simple (2,1)-tight graphs and an inductive construction requiring generic rigidity preservation for 5 graph moves, including the two Henneberg moves, an edge joining move, and various vertex surgery moves.
Read More: http://epubs.siam.org/doi/abs/10.1137/130913195