Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A comparison between parametric and non-parametric approaches to the analysis of replicated spatial point patterns.
AU - Diggle, Peter J.
AU - Mateu, J.
AU - Clough, H. E.
PY - 2000
Y1 - 2000
N2 - The paper compares non-parametric (design-based) and parametric (model-based) approaches to the analysis of data in the form of replicated spatial point patterns in two or more experimental groups. Basic questions for data of this kind concern estimating the properties of the underlying spatial point process within each experimental group, and comparing the properties between groups. A non-parametric approach, building on work by Diggle et. al. (1991), summarizes each pattern by an estimate of the reduced second moment measure or K-function (Ripley (1977)) and compares mean K-functions between experimental groups using a bootstrap testing procedure. A parametric approach fits particular classes of parametric model to the data, uses the model parameter estimates as summaries and tests for differences between groups by comparing fits with and without the assumption of common parameter values across groups. The paper discusses how either approach can be implemented in the specific context of a single-factor replicated experiment and uses simulations to show how the parametric approach can be more efficient when the underlying model assumptions hold, but potentially misleading otherwise.
AB - The paper compares non-parametric (design-based) and parametric (model-based) approaches to the analysis of data in the form of replicated spatial point patterns in two or more experimental groups. Basic questions for data of this kind concern estimating the properties of the underlying spatial point process within each experimental group, and comparing the properties between groups. A non-parametric approach, building on work by Diggle et. al. (1991), summarizes each pattern by an estimate of the reduced second moment measure or K-function (Ripley (1977)) and compares mean K-functions between experimental groups using a bootstrap testing procedure. A parametric approach fits particular classes of parametric model to the data, uses the model parameter estimates as summaries and tests for differences between groups by comparing fits with and without the assumption of common parameter values across groups. The paper discusses how either approach can be implemented in the specific context of a single-factor replicated experiment and uses simulations to show how the parametric approach can be more efficient when the underlying model assumptions hold, but potentially misleading otherwise.
KW - Expected significance levels
KW - K-function
KW - pseudo-likelihood function
KW - replicated spatial point patterns
KW - spatial analysis of variance
U2 - 10.1239/aap/1013540166
DO - 10.1239/aap/1013540166
M3 - Journal article
VL - 32
SP - 331
EP - 343
JO - Advances in Applied Probability
JF - Advances in Applied Probability
SN - 1475-6064
IS - 2
ER -