Rights statement: ©2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Accepted author manuscript, 1.93 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A compressive sensing assisted massive SM-VBLAST system
T2 - error probability performance and capacity analysis
AU - Xiao, Lixia
AU - Xiao, Pei
AU - Liu, Zilong
AU - Yu, Wenjuan
AU - Haas, Harald
AU - Hanzo, Lajos
N1 - ©2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
PY - 2020/3/31
Y1 - 2020/3/31
N2 - The concept of massive spatial modulation (SM) assisted vertical bell labs space-time (V-BLAST) (SM-VBLAST) system [1] is proposed, where SM symbols (instead of conventional constellation symbols) are mapped onto the VBLAST structure. We show that the proposed SM-VBLAST is a promising massive multiple input multiple output (MIMO) candidate owing to its high throughput and low number of radio frequency (RF) chains used at the transmitter. For the generalized massive SM-VBLAST systems, we first derive both the upper bounds of the average bit error probability (ABEP) and the lower bounds of the ergodic capacity. Then, we develop an efficient error correction mechanism (ECM) assisted compressive sensing (CS) detector whose performance tends to achieve that of the maximum likelihood (ML) detector. Our simulations indicate that the proposed ECM-CS detector is suitable both for massive SM-MIMO based point-to-point and for uplink communications at the cost of a slightly higher complexity than that of the compressive sampling matching pursuit (CoSaMP) based detector in the high SNR region.
AB - The concept of massive spatial modulation (SM) assisted vertical bell labs space-time (V-BLAST) (SM-VBLAST) system [1] is proposed, where SM symbols (instead of conventional constellation symbols) are mapped onto the VBLAST structure. We show that the proposed SM-VBLAST is a promising massive multiple input multiple output (MIMO) candidate owing to its high throughput and low number of radio frequency (RF) chains used at the transmitter. For the generalized massive SM-VBLAST systems, we first derive both the upper bounds of the average bit error probability (ABEP) and the lower bounds of the ergodic capacity. Then, we develop an efficient error correction mechanism (ECM) assisted compressive sensing (CS) detector whose performance tends to achieve that of the maximum likelihood (ML) detector. Our simulations indicate that the proposed ECM-CS detector is suitable both for massive SM-MIMO based point-to-point and for uplink communications at the cost of a slightly higher complexity than that of the compressive sampling matching pursuit (CoSaMP) based detector in the high SNR region.
U2 - 10.1109/TWC.2019.2960505
DO - 10.1109/TWC.2019.2960505
M3 - Journal article
VL - 19
SP - 1990
EP - 2005
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
SN - 1536-1276
IS - 3
ER -