Accepted author manuscript, 639 KB, PDF document
Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Final published version
Licence: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A Fuzzy Paradigmatic Clustering Algorithm
AU - Amirjavid, Farzad
AU - Barak, Sasan
AU - Nemati, Hamidreza
PY - 2019/12/31
Y1 - 2019/12/31
N2 - Clustering algorithms resume the datasets into few number of data points such as centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven machine learning, the more precision with the clustering rule leads directly to more precise classification, prediction, and recognition. We propose an efficient clustering method, which applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number, cluster border, and congestion coordinates to model the datasets of the natural distributions.This approach considers both qualitative and quantitative features of the dataset and calculates the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.
AB - Clustering algorithms resume the datasets into few number of data points such as centroids or medoids, which explain the entire dataset briefly. In the domain of data-driven machine learning, the more precision with the clustering rule leads directly to more precise classification, prediction, and recognition. We propose an efficient clustering method, which applies the paradigms - mainly 3D Gaussian model - to estimate the optimum cluster number, cluster border, and congestion coordinates to model the datasets of the natural distributions.This approach considers both qualitative and quantitative features of the dataset and calculates the best scale to analyze it. We used fuzzy logic to compare the models with data, to generate and rank the hypotheses, and finally to reject or accept the assumptions. The proposed approach which is called Fuzzy Gaussian Paradigmatic Clustering (FGPC) algorithm is used as the basis of a fast (with the complexity order of O(n)) and robust algorithm for identifying fuzzy models.
KW - Paradigmatic clustering
KW - Fuzzy logic
KW - Gaussian distribution
U2 - 10.1016/j.ifacol.2019.11.559
DO - 10.1016/j.ifacol.2019.11.559
M3 - Journal article
VL - 52
SP - 2360
EP - 2365
JO - IFAC-PapersOnLine
JF - IFAC-PapersOnLine
SN - 2405-8963
IS - 13
ER -