Accepted author manuscript, 7.35 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A new hybrid gadolinium nanoparticles-loaded polymeric material for neutron detection in rare event searches
AU - The DarkSide-20k Collaboration
AU - Acerbi, F.
AU - Adhikari, P.
AU - Agnes, P.
AU - Ahmad, I.
AU - Albergo, S.
AU - Albuquerque, I. F.
AU - Alexander, T.
AU - Alton, A. K.
AU - Amaudruz, P.
AU - Angiolilli, M.
AU - Aprile, E.
AU - Ardito, R.
AU - Corona, M. Atzori
AU - Auty, D. J.
AU - Ave, M.
AU - Avetisov, I. C.
AU - Azzolini, O.
AU - Back, H. O.
AU - Balmforth, Z.
AU - Olmedo, A. Barrado
AU - Barrillon, P.
AU - Batignani, G.
AU - Bhowmick, P.
AU - Bocci, V.
AU - Bonivento, W.
AU - Bottino, B.
AU - Boulay, M. G.
AU - Buchowicz, A.
AU - Bussino, S.
AU - Busto, J.
AU - Cadeddu, M.
AU - Cadoni, M.
AU - Calabrese, R.
AU - Camillo, V.
AU - Caminata, A.
AU - Canci, N.
AU - Capra, A.
AU - Caravati, M.
AU - Cárdenas-Montes, M.
AU - Cargioli, N.
AU - Carlini, M.
AU - Castellani, A.
AU - Castello, P.
AU - Cavalcante, P.
AU - Cavallo, D.
AU - Cebrian, S.
AU - Franchini, P.
AU - Nowak, J.
PY - 2024/9/16
Y1 - 2024/9/16
N2 - Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material.
AB - Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material.
KW - physics.ins-det
KW - hep-ex
U2 - 10.1088/1748-0221/19/09/P09021
DO - 10.1088/1748-0221/19/09/P09021
M3 - Journal article
VL - 19
JO - Journal of Instrumentation
JF - Journal of Instrumentation
SN - 1748-0221
IS - 09
ER -