Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A new strategy for diagnostic model assessment in capture-recapture
AU - McCrea, Rachel
AU - Morgan, Byron J. T.
AU - Gimenez, Olivier
PY - 2017/7/8
Y1 - 2017/7/8
N2 - Common to both diagnostic tests used in capture–recapture and score tests is the idea that starting from a simple base model it is possible to interrogate data to determine whether more complex parameter structures will be supported. Current recommendations advise that diagnostic tests are performed as a precursor to a model selection step. We show that certain well-known diagnostic tests for examining the fit of capture–recapture models to data are in fact score tests. Because of this direct relationship we investigate a new strategy for model assessment which combines the diagnosis of departure from basic model assumptions with a step-up model selection, all based on score tests. We investigate the power of such an approach to detect common reasons for lack of model fit and compare the performance of this new strategy with the existing recommendations by using simulation. We present motivating examples with real data for which the extra flexibility of score tests results in an improved performance compared with diagnostic tests.
AB - Common to both diagnostic tests used in capture–recapture and score tests is the idea that starting from a simple base model it is possible to interrogate data to determine whether more complex parameter structures will be supported. Current recommendations advise that diagnostic tests are performed as a precursor to a model selection step. We show that certain well-known diagnostic tests for examining the fit of capture–recapture models to data are in fact score tests. Because of this direct relationship we investigate a new strategy for model assessment which combines the diagnosis of departure from basic model assumptions with a step-up model selection, all based on score tests. We investigate the power of such an approach to detect common reasons for lack of model fit and compare the performance of this new strategy with the existing recommendations by using simulation. We present motivating examples with real data for which the extra flexibility of score tests results in an improved performance compared with diagnostic tests.
KW - Goodness-of-fit tests
KW - Model selection
KW - Power
KW - Transience
KW - Trap dependence
KW - U-CARE
U2 - 10.1111/rssc.12197
DO - 10.1111/rssc.12197
M3 - Journal article
VL - 66
SP - 815
EP - 831
JO - Journal of the Royal Statistical Society: Series C (Applied Statistics)
JF - Journal of the Royal Statistical Society: Series C (Applied Statistics)
SN - 0035-9254
IS - 4
ER -