1.7 MB, PDF document
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A SCUBA-2 survey of FeLoBAL QSOs. Are FeLoBALs in a `transition phase' between ULIRGs and QSOs?
AU - Violino, Giulio
AU - Coppin, Kristen E. K.
AU - Stevens, Jason A.
AU - Farrah, Duncan
AU - Geach, James E.
AU - Alexander, Dave M.
AU - Hickox, Ryan
AU - Smith, Daniel J. B.
AU - Wardlow, Julie L.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - It is thought that a class of broad absorption line (BAL) QSOs, characterized by Fe absorption features in their UV spectra (called `FeLoBALs'), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been injected into the interstellar medium by the starburst. To test this hypothesis, we have undertaken deep Submillimetre Common-User Bolometer Array 2 (SCUBA-2) 850 μm observations of a sample of 17 FeLoBAL QSOs with 0.89 ≤ z ≤ 2.78 and -23.31 ≤ MB ≤ -28.50 to directly detect an excess in the thermal emission of the dust which would probe enhanced star formation activity. We find that FeLoBALs are not luminous sources in the sub-mm, none of them are individually detected at 850 μm, nor as a population through stacking (Fs = 1.14 ± 0.58 mJy). Statistical and survival analyses reveal that FeLoBALs have sub-mm properties consistent with BAL and non-BAL QSOs with matched redshifts and magnitudes. An Spectral Energy Distribution fitting analysis shows that the far-infrared emission is dominated by active galactic nuclei activity, and a starburst component is required only in 6/17 sources of our sample; moreover the integrated total luminosity of 16/17 sources is L ≥ 1012 L⊙, high enough to classify FeLoBALs as infrared luminous. In conclusion, we do not find any evidence in support of FeLoBAL QSOs being a transition population between an ultraluminous infrared galaxy (ULIRG) and an unobscured QSO; in particular, FeLoBALs are not characterized by a cold starburst which would support this hypothesis.
AB - It is thought that a class of broad absorption line (BAL) QSOs, characterized by Fe absorption features in their UV spectra (called `FeLoBALs'), could mark a transition stage between the end of an obscured starburst event and a youthful QSO beginning to shed its dust cocoon, where Fe has been injected into the interstellar medium by the starburst. To test this hypothesis, we have undertaken deep Submillimetre Common-User Bolometer Array 2 (SCUBA-2) 850 μm observations of a sample of 17 FeLoBAL QSOs with 0.89 ≤ z ≤ 2.78 and -23.31 ≤ MB ≤ -28.50 to directly detect an excess in the thermal emission of the dust which would probe enhanced star formation activity. We find that FeLoBALs are not luminous sources in the sub-mm, none of them are individually detected at 850 μm, nor as a population through stacking (Fs = 1.14 ± 0.58 mJy). Statistical and survival analyses reveal that FeLoBALs have sub-mm properties consistent with BAL and non-BAL QSOs with matched redshifts and magnitudes. An Spectral Energy Distribution fitting analysis shows that the far-infrared emission is dominated by active galactic nuclei activity, and a starburst component is required only in 6/17 sources of our sample; moreover the integrated total luminosity of 16/17 sources is L ≥ 1012 L⊙, high enough to classify FeLoBALs as infrared luminous. In conclusion, we do not find any evidence in support of FeLoBAL QSOs being a transition population between an ultraluminous infrared galaxy (ULIRG) and an unobscured QSO; in particular, FeLoBALs are not characterized by a cold starburst which would support this hypothesis.
KW - galaxies: evolution
KW - galaxies: formation
KW - galaxies: high-redshift
KW - quasars: absorption lines
KW - submillimetre: galaxies
U2 - 10.1093/mnras/stv2937
DO - 10.1093/mnras/stv2937
M3 - Journal article
VL - 457
SP - 1371
EP - 1384
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
SN - 0035-8711
IS - 2
ER -