Accepted author manuscript, 73.4 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A short proof of the fact that the matrix trace is the expectation of the numerical values
AU - Kania, Tomasz
PY - 2015/10
Y1 - 2015/10
N2 - Using the fact that the normalised matrix trace is the unique linear functional $f$ on the algebra of $n\times n$ matrices which satisfies $f(I)=1$ and $f(AB)=f(BA)$ for all $n\times n$ matrices $A$ and $B$, we derive a well-known formula expressing the normalised trace of a complex matrix $A$ as the expectation of the numerical values of $A$; that is the function $\langle Ax,x\rangle$, where $x$ ranges the unit sphere of $\mathbb{C}^n$.
AB - Using the fact that the normalised matrix trace is the unique linear functional $f$ on the algebra of $n\times n$ matrices which satisfies $f(I)=1$ and $f(AB)=f(BA)$ for all $n\times n$ matrices $A$ and $B$, we derive a well-known formula expressing the normalised trace of a complex matrix $A$ as the expectation of the numerical values of $A$; that is the function $\langle Ax,x\rangle$, where $x$ ranges the unit sphere of $\mathbb{C}^n$.
KW - matrix trace
KW - numerical values
KW - unitary matrix
U2 - 10.4169/amer.math.monthly.122.8.782
DO - 10.4169/amer.math.monthly.122.8.782
M3 - Journal article
VL - 122
SP - 782
EP - 783
JO - American Mathematical Monthly
JF - American Mathematical Monthly
SN - 0002-9890
IS - 8
ER -