Accepted author manuscript, 1.64 MB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - A Trilayer Structure with Surface Binary Microsphere Array for Radiative Cooling and Heating Regulation
AU - Wang, Tong
AU - Zhang, Shuqi
AU - Zhu, Qian
AU - Zhang, Jie
AU - Zhang, Yu
AU - Du, Yanping
AU - Wu, Limin
AU - Gu, Min
AU - Zhang, Yinan
PY - 2024/7/1
Y1 - 2024/7/1
N2 - Passive daytime radiative cooling is of tremendous interest but would overcool during cold nights or winter days, exacerbating the heating cost, especially in high-latitude areas. Integrating the heating and cooling in one photothermal system can avoid cooling penalties and potential barriers for wide practical scenarios. Herein, we demonstrate a trilayer structure with visible and infrared spectral engineering for all-season radiative cooling and heating. The cooling mode with a solar reflectivity of 0.95 and a mid-infrared emissivity of 0.98 endows a comparable daytime subambient cooling of 9.8 °C with a theoretically net cooling power of 76.6 W/m2. Meanwhile, the heating mode with a solar absorptivity of 0.88 and a mid-infrared emissivity of 0.28 yields a daytime above-ambient heating of 16.3 °C with a theoretical net heating power of 667.8 W/m2. Promisingly, the surface binary microsphere array further enhances the mid-infrared emissivity, superhydrophobicity, and environmental durability, making the trilayer structure a viable pathway for thermal management with great potential in electricity savings and CO2 emission reduction. This work offers new possibilities for designing next-generation radiative cooling materials, greatly widening the scope of use.
AB - Passive daytime radiative cooling is of tremendous interest but would overcool during cold nights or winter days, exacerbating the heating cost, especially in high-latitude areas. Integrating the heating and cooling in one photothermal system can avoid cooling penalties and potential barriers for wide practical scenarios. Herein, we demonstrate a trilayer structure with visible and infrared spectral engineering for all-season radiative cooling and heating. The cooling mode with a solar reflectivity of 0.95 and a mid-infrared emissivity of 0.98 endows a comparable daytime subambient cooling of 9.8 °C with a theoretically net cooling power of 76.6 W/m2. Meanwhile, the heating mode with a solar absorptivity of 0.88 and a mid-infrared emissivity of 0.28 yields a daytime above-ambient heating of 16.3 °C with a theoretical net heating power of 667.8 W/m2. Promisingly, the surface binary microsphere array further enhances the mid-infrared emissivity, superhydrophobicity, and environmental durability, making the trilayer structure a viable pathway for thermal management with great potential in electricity savings and CO2 emission reduction. This work offers new possibilities for designing next-generation radiative cooling materials, greatly widening the scope of use.
M3 - Journal article
JO - ACS Photonics
JF - ACS Photonics
SN - 2330-4022
ER -