Home > Research > Publications & Outputs > Abelian subalgebras and ideals of maximal dimen...

Electronic data

Links

Text available via DOI:

View graph of relations

Abelian subalgebras and ideals of maximal dimension in Poisson algebras

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Abelian subalgebras and ideals of maximal dimension in Poisson algebras. / Ouaridi, Amir; Navarro, Rosa; Towers, David.
In: Journal of Algebra, Vol. 660, 15.12.2024, p. 680-704.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Ouaridi A, Navarro R, Towers D. Abelian subalgebras and ideals of maximal dimension in Poisson algebras. Journal of Algebra. 2024 Dec 15;660:680-704. Epub 2024 Aug 8. doi: 10.1016/j.jalgebra.2024.07.032

Author

Ouaridi, Amir ; Navarro, Rosa ; Towers, David. / Abelian subalgebras and ideals of maximal dimension in Poisson algebras. In: Journal of Algebra. 2024 ; Vol. 660. pp. 680-704.

Bibtex

@article{c02f1795c9024371ae7b1804b1cfb2d0,
title = "Abelian subalgebras and ideals of maximal dimension in Poisson algebras",
abstract = "This paper studies the abelian subalgebras and ideals of maximal dimension ofPoisson algebras P of dimension n. We introduce the invariants α and β for Poisson algebras, which correspond to the dimension of an abelian subalgebra and ideal of maximal dimension, respectively. We prove that these invariants coincide if α(P) = n−1. We characterize the Poisson algebras with α(P) = n − 2 over arbitrary fields. In particular, we characterize Lie algebras L with α(L) = n − 2. We also show that α(P) = n − 2 for nilpotent Poisson algebras implies β(P) = n − 2. Finally, we study these invariants for various distinguished Poisson algebras, providing us with several examples and counterexamples.",
author = "Amir Ouaridi and Rosa Navarro and David Towers",
year = "2024",
month = dec,
day = "15",
doi = "10.1016/j.jalgebra.2024.07.032",
language = "English",
volume = "660",
pages = "680--704",
journal = "Journal of Algebra",
issn = "0021-8693",
publisher = "ELSEVIER ACADEMIC PRESS INC",

}

RIS

TY - JOUR

T1 - Abelian subalgebras and ideals of maximal dimension in Poisson algebras

AU - Ouaridi, Amir

AU - Navarro, Rosa

AU - Towers, David

PY - 2024/12/15

Y1 - 2024/12/15

N2 - This paper studies the abelian subalgebras and ideals of maximal dimension ofPoisson algebras P of dimension n. We introduce the invariants α and β for Poisson algebras, which correspond to the dimension of an abelian subalgebra and ideal of maximal dimension, respectively. We prove that these invariants coincide if α(P) = n−1. We characterize the Poisson algebras with α(P) = n − 2 over arbitrary fields. In particular, we characterize Lie algebras L with α(L) = n − 2. We also show that α(P) = n − 2 for nilpotent Poisson algebras implies β(P) = n − 2. Finally, we study these invariants for various distinguished Poisson algebras, providing us with several examples and counterexamples.

AB - This paper studies the abelian subalgebras and ideals of maximal dimension ofPoisson algebras P of dimension n. We introduce the invariants α and β for Poisson algebras, which correspond to the dimension of an abelian subalgebra and ideal of maximal dimension, respectively. We prove that these invariants coincide if α(P) = n−1. We characterize the Poisson algebras with α(P) = n − 2 over arbitrary fields. In particular, we characterize Lie algebras L with α(L) = n − 2. We also show that α(P) = n − 2 for nilpotent Poisson algebras implies β(P) = n − 2. Finally, we study these invariants for various distinguished Poisson algebras, providing us with several examples and counterexamples.

U2 - 10.1016/j.jalgebra.2024.07.032

DO - 10.1016/j.jalgebra.2024.07.032

M3 - Journal article

VL - 660

SP - 680

EP - 704

JO - Journal of Algebra

JF - Journal of Algebra

SN - 0021-8693

ER -