Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Action formalism for geometric phases from self-closing quantum trajectories
AU - Romito, Alessandro
AU - Shea, Dominic
PY - 2024/8/2
Y1 - 2024/8/2
N2 - When subject to measurements, quantum systems evolve along stochastic quantum trajectories that can be naturally equipped with a geometric phase observable via a post-selection in a final projective measurement. When post-selecting the trajectories to form a close loop, the geometric phase undergoes a topological transition driven by the measurement strength. Here, we study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system. We utilize a stochastic path integral that enables the analysis of rare self-closing events using action methods and develop the formalism to incorporate the measurement-induced geometric phase therein. We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter. Moreover, the inclusion of Gaussian corrections in the vicinity of the most probable self-closing trajectory quantitatively changes the transition point in agreement with results from numerical simulations of the full set of quantum trajectories.
AB - When subject to measurements, quantum systems evolve along stochastic quantum trajectories that can be naturally equipped with a geometric phase observable via a post-selection in a final projective measurement. When post-selecting the trajectories to form a close loop, the geometric phase undergoes a topological transition driven by the measurement strength. Here, we study the geometric phase of a subset of self-closing trajectories induced by a continuous Gaussian measurement of a single qubit system. We utilize a stochastic path integral that enables the analysis of rare self-closing events using action methods and develop the formalism to incorporate the measurement-induced geometric phase therein. We show that the geometric phase of the most likely trajectories undergoes a topological transition for self-closing trajectories as a function of the measurement strength parameter. Moreover, the inclusion of Gaussian corrections in the vicinity of the most probable self-closing trajectory quantitatively changes the transition point in agreement with results from numerical simulations of the full set of quantum trajectories.
U2 - 10.1088/1751-8121/ad5e4b
DO - 10.1088/1751-8121/ad5e4b
M3 - Journal article
VL - 57
JO - Journal of Physics A: Mathematical and Theoretical
JF - Journal of Physics A: Mathematical and Theoretical
SN - 1751-8113
IS - 31
M1 - 315303
ER -