Rights statement: This is the peer reviewed version of the following article: S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger‐Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl'Innocenti, Advanced Optical Materials 2018, 6, 1800570. https://doi.org/10.1002/adom.201800570 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002./adom.201800570/abstract This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
Accepted author manuscript, 621 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Final published version
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning
AU - Kindness, Stephen
AU - Almond, Nikita
AU - Wei, Binbin
AU - Wallis, Robert
AU - Michailow, Wladislaw
AU - Kamboj, Varun S.
AU - Braeuninger-Weimer, Philipp
AU - Hofmann, Stephan
AU - Beere, Harvey E.
AU - Ritchie, D. A.
AU - Degl'Innocenti, Riccardo
N1 - This is the peer reviewed version of the following article:S. J. Kindness, N. W. Almond, B. Wei, R. Wallis, W. Michailow, V. S. Kamboj, P. Braeuninger‐Weimer, S. Hofmann, H. E. Beere, D. A. Ritchie, R. Degl'Innocenti, Advanced Optical Materials 2018, 6, 1800570. https://doi.org/10.1002/adom.201800570 which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002./adom.201800570/abstract This article may be used for non-commercial purposes in accordance With Wiley Terms and Conditions for self-archiving.
PY - 2018/11/5
Y1 - 2018/11/5
N2 - Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid opticalmodes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of ≈100 GHz operating at 1.5 THz.The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications.
AB - Optoelectronic terahertz modulators, operated by actively tuning metamaterial, plasmonic resonator structures, have helped to unlock a myriad of terahertz applications, ranging from spectroscopy and imaging to communications. At the same time, due to the inherently versatile dispersion properties of metamaterials, they offer unique platforms for studying intriguing phenomena such as negative refractive index and slow light. Active resonance frequency tuning of a metamaterial working in the terahertz regime is achieved by integrating metal-coupled resonator arrays with electrically tunable graphene. This metamaterial device exploits coupled plasmonic resonators to exhibit an electromagnetically induced transparency analog, resulting in the splitting of the resonance into coupled hybrid opticalmodes. By variably dampening one of the resonators using graphene, the coupling condition is electrically modulated and continuous tuning of the metamaterial resonance frequency is achieved. This device, operating at room temperature, can readily be implemented as a fast, optoelectronic, tunable band pass/reject filter with a tuning range of ≈100 GHz operating at 1.5 THz.The reconfigurable dispersion properties of this device can also be implemented for modulation of the group delay for slow light applications.
KW - electromagnetically induced transparency
KW - graphene
KW - metamaterials
KW - terahertz
U2 - 10.1002/adom.201800570
DO - 10.1002/adom.201800570
M3 - Journal article
VL - 6
JO - Advanced Optical Materials
JF - Advanced Optical Materials
SN - 2195-1071
IS - 21
ER -