We investigate the radio, X-Ray and far-infrared properties of active galactic nuclei (AGN) with strong radio jets at 2.2 < z < 3.5 in the COSMOS field and compare them to AGN without obvious radio jets at similar redshift. We identify 4 jet producing AGNs in the SC4K sample of distant Lyman-α emitting sources and 8 in the VLA radio catalogue, with 2 sources being represented in both, implying a jet fraction of 0.13±0.04% in Lyα emitters and 0.71±0.08% in the general radio-selected population. We find an average radio luminosity for the jets of (2.27±0.01)×10^25 W/Hz in the 3GHz band and (3.10±0.01)×10^25 W/Hz in the 1.4GHz band. We find that the average accretion rate of the AGNs with jets is 0.141+-0.07 M_sun/yr which is lower than the average of the radio AGN without jets, of 0.271+-0.091M_sun/yr. The star formation rate based on the far-infrared is found to be higher for AGN without jets o(~279 M_sun/yr) and to be a third of that value for AGN with jets (~92 M_sun/yr). All the jet producing AGNs we found at z < 3 had an X-ray hardness > 0 and average of 0.41±0.21, higher than the average for AGN without jets of 0.14±0.47. We conclude that the presence of jets may inhibit the AGN’s current activity, due to the large size and luminosity of jets, the energy and matter distributions are altered in such a way that the galaxy’s SFR and BHAR are impacted noticeably, agreeing with previous research and findings.
Stevens et al. (2020), NLUAstro, 2, 1