Home > Research > Publications & Outputs > An event-based simulation for optimizing one-wa...

Electronic data

View graph of relations

An event-based simulation for optimizing one-way car-sharing systems

Research output: Contribution to conference - Without ISBN/ISSN Abstractpeer-review

Published

Standard

An event-based simulation for optimizing one-way car-sharing systems. / Repoux, Martin; Boyacı, Burak; Geroliminis, Nikolas.
2014. Abstract from STRC 2014 – 14th Swiss Transport Research Conference, Ascona, Switzerland.

Research output: Contribution to conference - Without ISBN/ISSN Abstractpeer-review

Harvard

Repoux, M, Boyacı, B & Geroliminis, N 2014, 'An event-based simulation for optimizing one-way car-sharing systems', STRC 2014 – 14th Swiss Transport Research Conference, Ascona, Switzerland, 14/05/14 - 16/05/14.

APA

Repoux, M., Boyacı, B., & Geroliminis, N. (2014). An event-based simulation for optimizing one-way car-sharing systems. Abstract from STRC 2014 – 14th Swiss Transport Research Conference, Ascona, Switzerland.

Vancouver

Repoux M, Boyacı B, Geroliminis N. An event-based simulation for optimizing one-way car-sharing systems. 2014. Abstract from STRC 2014 – 14th Swiss Transport Research Conference, Ascona, Switzerland.

Author

Repoux, Martin ; Boyacı, Burak ; Geroliminis, Nikolas. / An event-based simulation for optimizing one-way car-sharing systems. Abstract from STRC 2014 – 14th Swiss Transport Research Conference, Ascona, Switzerland.11 p.

Bibtex

@conference{2eb4a25a88674614a1270eeeb94aba0d,
title = "An event-based simulation for optimizing one-way car-sharing systems",
abstract = "Car-sharing systems allow registered users to use cars spread throughout an urban area: vehicles are at their disposal anytime they need one against some amount of money per minute rental. The customer avoids some issues linked to the ownership of a car such as insurance fees, maintenance or parking. Such a system is beneficial for the society in terms of environmental, energetic impacts and congestion. It completes the urban transportation service by allying the efficiency of public transportation and the flexibility of owning a vehicle. Car-sharing systems can be classified in different families depending on the rental conditions. For instance, free-floating systems allow people to park the vehicles anywhere in city area whereas non-free floating impose to users to park them inside stations with limited number of allowed spots. In this last family, another differentiating feature is the {"}one-way/two-way{"} characteristic: two-way systems force the user to return the car to the location where it was picked-up whereas one-way systems allow drop-off at any station.We focus in this research mainly on non-free-floating one-way electric systems. The system operations naturally induce imbalances in the distribution of vehicles that need to be corrected by performing relocations. Our aim is to model and simulate those operations to first analyze the way the system evolves with time and then to test different management policies for operations and especially relocations in order to both maximize customers' satisfaction and make the operation of the system sustainable for the operator.",
keywords = "carsharing, relocation, one-way system, electric vehicles, event-based simulation, optimization",
author = "Martin Repoux and Burak Boyacı and Nikolas Geroliminis",
year = "2014",
month = may,
day = "14",
language = "English",
note = "STRC 2014 – 14th Swiss Transport Research Conference ; Conference date: 14-05-2014 Through 16-05-2014",
url = "http://www.strc.ch/2014.php",

}

RIS

TY - CONF

T1 - An event-based simulation for optimizing one-way car-sharing systems

AU - Repoux, Martin

AU - Boyacı, Burak

AU - Geroliminis, Nikolas

PY - 2014/5/14

Y1 - 2014/5/14

N2 - Car-sharing systems allow registered users to use cars spread throughout an urban area: vehicles are at their disposal anytime they need one against some amount of money per minute rental. The customer avoids some issues linked to the ownership of a car such as insurance fees, maintenance or parking. Such a system is beneficial for the society in terms of environmental, energetic impacts and congestion. It completes the urban transportation service by allying the efficiency of public transportation and the flexibility of owning a vehicle. Car-sharing systems can be classified in different families depending on the rental conditions. For instance, free-floating systems allow people to park the vehicles anywhere in city area whereas non-free floating impose to users to park them inside stations with limited number of allowed spots. In this last family, another differentiating feature is the "one-way/two-way" characteristic: two-way systems force the user to return the car to the location where it was picked-up whereas one-way systems allow drop-off at any station.We focus in this research mainly on non-free-floating one-way electric systems. The system operations naturally induce imbalances in the distribution of vehicles that need to be corrected by performing relocations. Our aim is to model and simulate those operations to first analyze the way the system evolves with time and then to test different management policies for operations and especially relocations in order to both maximize customers' satisfaction and make the operation of the system sustainable for the operator.

AB - Car-sharing systems allow registered users to use cars spread throughout an urban area: vehicles are at their disposal anytime they need one against some amount of money per minute rental. The customer avoids some issues linked to the ownership of a car such as insurance fees, maintenance or parking. Such a system is beneficial for the society in terms of environmental, energetic impacts and congestion. It completes the urban transportation service by allying the efficiency of public transportation and the flexibility of owning a vehicle. Car-sharing systems can be classified in different families depending on the rental conditions. For instance, free-floating systems allow people to park the vehicles anywhere in city area whereas non-free floating impose to users to park them inside stations with limited number of allowed spots. In this last family, another differentiating feature is the "one-way/two-way" characteristic: two-way systems force the user to return the car to the location where it was picked-up whereas one-way systems allow drop-off at any station.We focus in this research mainly on non-free-floating one-way electric systems. The system operations naturally induce imbalances in the distribution of vehicles that need to be corrected by performing relocations. Our aim is to model and simulate those operations to first analyze the way the system evolves with time and then to test different management policies for operations and especially relocations in order to both maximize customers' satisfaction and make the operation of the system sustainable for the operator.

KW - carsharing

KW - relocation

KW - one-way system

KW - electric vehicles

KW - event-based simulation

KW - optimization

UR - http://www.strc.ch/2014.php

M3 - Abstract

T2 - STRC 2014 – 14th Swiss Transport Research Conference

Y2 - 14 May 2014 through 16 May 2014

ER -