Home > Research > Publications & Outputs > Application of cluster analysis to identify dif...

Electronic data

  • MaCainUshakovaC_E2024

    Accepted author manuscript, 1 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Application of cluster analysis to identify different reader groups through their engagement with a digital reading supplement

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Application of cluster analysis to identify different reader groups through their engagement with a digital reading supplement. / Ma, Yawen; Ushakova, Anastasia; Cain, Kate.
In: Computers and Education, Vol. 214, 105025, 01.06.2024.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Ma Y, Ushakova A, Cain K. Application of cluster analysis to identify different reader groups through their engagement with a digital reading supplement. Computers and Education. 2024 Jun 1;214:105025. Epub 2024 Feb 29. doi: 10.1016/j.compedu.2024.105025

Author

Bibtex

@article{70184b34bb4a40eaa5bed4310efdce1e,
title = "Application of cluster analysis to identify different reader groups through their engagement with a digital reading supplement",
abstract = "The focus of this study is the identification of reader profiles that differ in performance and progression in an educational literacy app. A total of 19,830 students in Grade 2 from 347 Elementary schools located in 30 different districts in the United States played the app from 2020 to 2021. Our aim was to identify unique groups of readers using an unsupervised statistical learning technique - cluster analysis. Six indicators generated from the students{\textquoteright} log files were included to provide insights into engagement and learning across four different reading-related skills: phonological awareness, early decoding, vocabulary, and comprehension processes. A key aim was to evaluate the implementation and performance of Gaussian mixture models, k-means, k-medoids, clustering large applications and hierarchical clustering, alongside provision of detailed guidance that can benefit researchers in the field. K-means algorithm performed the best and identified nine groups of readers. Children with low initial reading ability showed greater engagement with code-related games (phonological awareness, early decoding) and took longer to master these games, whereas children with higher initial ability showed more engagement with meaning-related games (vocabulary, comprehension processes). Our findings can inform further research that aims to understand individual differences in learning behaviour within digital environments both over time and across various cohorts of children.",
author = "Yawen Ma and Anastasia Ushakova and Kate Cain",
year = "2024",
month = jun,
day = "1",
doi = "10.1016/j.compedu.2024.105025",
language = "English",
volume = "214",
journal = "Computers and Education",
issn = "0360-1315",
publisher = "Elsevier Limited",

}

RIS

TY - JOUR

T1 - Application of cluster analysis to identify different reader groups through their engagement with a digital reading supplement

AU - Ma, Yawen

AU - Ushakova, Anastasia

AU - Cain, Kate

PY - 2024/6/1

Y1 - 2024/6/1

N2 - The focus of this study is the identification of reader profiles that differ in performance and progression in an educational literacy app. A total of 19,830 students in Grade 2 from 347 Elementary schools located in 30 different districts in the United States played the app from 2020 to 2021. Our aim was to identify unique groups of readers using an unsupervised statistical learning technique - cluster analysis. Six indicators generated from the students’ log files were included to provide insights into engagement and learning across four different reading-related skills: phonological awareness, early decoding, vocabulary, and comprehension processes. A key aim was to evaluate the implementation and performance of Gaussian mixture models, k-means, k-medoids, clustering large applications and hierarchical clustering, alongside provision of detailed guidance that can benefit researchers in the field. K-means algorithm performed the best and identified nine groups of readers. Children with low initial reading ability showed greater engagement with code-related games (phonological awareness, early decoding) and took longer to master these games, whereas children with higher initial ability showed more engagement with meaning-related games (vocabulary, comprehension processes). Our findings can inform further research that aims to understand individual differences in learning behaviour within digital environments both over time and across various cohorts of children.

AB - The focus of this study is the identification of reader profiles that differ in performance and progression in an educational literacy app. A total of 19,830 students in Grade 2 from 347 Elementary schools located in 30 different districts in the United States played the app from 2020 to 2021. Our aim was to identify unique groups of readers using an unsupervised statistical learning technique - cluster analysis. Six indicators generated from the students’ log files were included to provide insights into engagement and learning across four different reading-related skills: phonological awareness, early decoding, vocabulary, and comprehension processes. A key aim was to evaluate the implementation and performance of Gaussian mixture models, k-means, k-medoids, clustering large applications and hierarchical clustering, alongside provision of detailed guidance that can benefit researchers in the field. K-means algorithm performed the best and identified nine groups of readers. Children with low initial reading ability showed greater engagement with code-related games (phonological awareness, early decoding) and took longer to master these games, whereas children with higher initial ability showed more engagement with meaning-related games (vocabulary, comprehension processes). Our findings can inform further research that aims to understand individual differences in learning behaviour within digital environments both over time and across various cohorts of children.

U2 - 10.1016/j.compedu.2024.105025

DO - 10.1016/j.compedu.2024.105025

M3 - Journal article

VL - 214

JO - Computers and Education

JF - Computers and Education

SN - 0360-1315

M1 - 105025

ER -