Accepted author manuscript, 317 KB, PDF document
Available under license: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Automated threshold selection and associated inference uncertainty for univariate extremes
AU - Murphy, Conor
AU - Tawn, Jonathan
AU - Varty, Zak
PY - 2024/10/10
Y1 - 2024/10/10
N2 - Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.
AB - Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples is difficult and highly subjective through standard methods. Inference for high quantiles can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. We develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in the threshold estimation and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation, relative to the leading existing methods, and show how the method's effectiveness is not sensitive to the tuning parameters. We apply our method to the well-known, troublesome example of the River Nidd dataset.
M3 - Journal article
JO - Technometrics
JF - Technometrics
SN - 0040-1706
ER -