Home > Research > Publications & Outputs > Automatic Locally Stationary Time Series Foreca...

Electronic data

View graph of relations

Automatic Locally Stationary Time Series Forecasting with application to predicting U.K. Gross Value Added Time Series under sudden shocks caused by the COVID pandemic

Research output: Working paperPreprint

Publication date14/03/2023
<mark>Original language</mark>English


Accurate forecasting of the U.K. gross value added (GVA) is fundamental for measuring the growth of the U.K. economy. A common nonstationarity in GVA data, such as the ABML series, is its increase in variance over time due to inflation. Transformed or inflation-adjusted series can still be challenging for classical stationarity-assuming forecasters. We adopt a different approach that works directly with the GVA series by advancing recent forecasting methods for locally stationary time series. Our approach results in more accurate and reliable forecasts, and continues to work well even when the ABML series becomes highly variable during the COVID pandemic.

Bibliographic note

21 pages, 4 figures