Final published version
Licence: CC BY: Creative Commons Attribution 4.0 International License
Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Avoiding bias in estimates of population size for translocation management
AU - Bickerton, Katherine T
AU - Ewen, John G
AU - Canessa, Stefano
AU - Cole, Nik C
AU - Frost, Fay
AU - Mootoocurpen, Rouben
AU - McCrea, Rachel
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Mark–recapture surveys are commonly used to monitor translocated populations globally. Data gathered are then used to estimate demographic parameters, such as abundance and survival, using Jolly–Seber (JS) models. However, in translocated populations initial population size is known and failure to account for this may bias parameter estimates, which are important for informing conservation decisions during population establishment. Here, we provide methods to account for known initial population size in JS models by incorporating a separate component likelihood for translocated individuals, using a maximum‐likelihood estimation, with models that can be fitted using either R or MATLAB. We use simulated data and a case study of a threatened lizard species with low capture probability to demonstrate that unconstrained JS models may overestimate the size of translocated populations, especially in the early stages of post‐release monitoring. Our approach corrects this bias; we use our simulations to demonstrate that overestimates of population size between 78% and 130% can occur in the unconstrained JS models when the detection probability is below 0.3 compared to 1%–8.9% for our constrained model. Our case study did not show an overestimate; however accounting for the initial population size greatly reduced error in all parameter estimates and prevented boundary estimates. Adopting the corrected JS model for translocations will help managers to obtain more robust estimates of the population sizes of translocated animals, better informing future management including reinforcement decisions, and ultimately improving translocation success.
AB - Mark–recapture surveys are commonly used to monitor translocated populations globally. Data gathered are then used to estimate demographic parameters, such as abundance and survival, using Jolly–Seber (JS) models. However, in translocated populations initial population size is known and failure to account for this may bias parameter estimates, which are important for informing conservation decisions during population establishment. Here, we provide methods to account for known initial population size in JS models by incorporating a separate component likelihood for translocated individuals, using a maximum‐likelihood estimation, with models that can be fitted using either R or MATLAB. We use simulated data and a case study of a threatened lizard species with low capture probability to demonstrate that unconstrained JS models may overestimate the size of translocated populations, especially in the early stages of post‐release monitoring. Our approach corrects this bias; we use our simulations to demonstrate that overestimates of population size between 78% and 130% can occur in the unconstrained JS models when the detection probability is below 0.3 compared to 1%–8.9% for our constrained model. Our case study did not show an overestimate; however accounting for the initial population size greatly reduced error in all parameter estimates and prevented boundary estimates. Adopting the corrected JS model for translocations will help managers to obtain more robust estimates of the population sizes of translocated animals, better informing future management including reinforcement decisions, and ultimately improving translocation success.
KW - Nactus coindemirensis
KW - capture–recapture
KW - conservation translocation
KW - lesser night gecko
KW - mark–recapture
KW - reintroduction
U2 - 10.1002/eap.2918
DO - 10.1002/eap.2918
M3 - Journal article
C2 - 37688800
VL - 33
SP - e2918
JO - Ecological Applications
JF - Ecological Applications
SN - 1051-0761
IS - 8
M1 - e2918
ER -