Final published version
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Chapter
Research output: Contribution in Book/Report/Proceedings - With ISBN/ISSN › Chapter
}
TY - CHAP
T1 - Biomechanical constraints to stair negotiation
AU - Maganaris, C.
AU - Baltzopoulos, V.
AU - Jones, D.
AU - Giulio, I.D.
AU - Reeves, N.
AU - Gavin, J.
AU - Ewen, A.
AU - King, S.
AU - Roys, M.
PY - 2018/2/28
Y1 - 2018/2/28
N2 - This chapter discusses strategies that older and younger people employ to negotiate stairs based on experiments performed on an instrumented staircase in lab environment aiming at identifying ways to reduce stair fall risk for the elderly. Stair negotiation was found to be more demanding for the knee and ankle joint muscles in older than younger adults, with the demand increasing further when the step-rise was higher. During descent of stairs with higher step-rises, older adults shifted the centre of mass (COM) posteriorly, behind the centre of pressure (COP) to prevent forward falling. A decreased step-going resulted in a slower descent of the centre of mass in the older adults and standing on a single leg for longer than younger adults. A greater reliance on the handrails and rotation of the body in the direction of the handrail was also observed when the step-going was decreased during descent, which allowed this task to be performed with better dynamic stability, by maintaining the COM closer to the COP. These findings have important implications for stair design and exercise programs aiming at improving safety on stairs for the elderly.
AB - This chapter discusses strategies that older and younger people employ to negotiate stairs based on experiments performed on an instrumented staircase in lab environment aiming at identifying ways to reduce stair fall risk for the elderly. Stair negotiation was found to be more demanding for the knee and ankle joint muscles in older than younger adults, with the demand increasing further when the step-rise was higher. During descent of stairs with higher step-rises, older adults shifted the centre of mass (COM) posteriorly, behind the centre of pressure (COP) to prevent forward falling. A decreased step-going resulted in a slower descent of the centre of mass in the older adults and standing on a single leg for longer than younger adults. A greater reliance on the handrails and rotation of the body in the direction of the handrail was also observed when the step-going was decreased during descent, which allowed this task to be performed with better dynamic stability, by maintaining the COM closer to the COP. These findings have important implications for stair design and exercise programs aiming at improving safety on stairs for the elderly.
U2 - 10.51952/9781447314752.ch014
DO - 10.51952/9781447314752.ch014
M3 - Chapter
SN - 9781447314738
T3 - The New Dynamics of Ageing
SP - 277
EP - 304
BT - The New Dynamics of Ageing
PB - Bristol University Press
ER -