Home > Research > Publications & Outputs > Biosurfactants as foaming agents in calcium pho...

Electronic data

  • Cichon et al biosurfactants - accepted version

    Rights statement: This is the author’s version of a work that was accepted for publication in Biomaterials Advances. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials Advances, 145, 2023 DOI: 10.1016/j.bioadv.2022.213273

    Accepted author manuscript, 1.62 MB, PDF document

    Embargo ends: 6/01/25

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Biosurfactants as foaming agents in calcium phosphate bone cements

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
Article number213273
<mark>Journal publication date</mark>28/02/2023
<mark>Journal</mark>Biomaterials Advances
Volume145
Number of pages14
Publication StatusPublished
Early online date26/12/22
<mark>Original language</mark>English

Abstract

The idea of using biosurfactants to obtain highly porous, foamed calcium phosphate cements (fCPCs) is novel. The popularity of these compounds is mainly attributed to their biological activity such as anticancer or antibacterial properties. In our study, it was investigated how the functionalization of cements, based on α-tricalcium phosphate (α-TCP), with non-ionic biosurfactants such as sucrose ester S0112 and saponin from Quillaja bark affected the physicochemical as well as biological properties of cement-type materials. Foaming with these selected surface active agents led to highly porous fCPCs (open porosity >60 vol%) with compressive strength values ranging from 0.2 to 3.3 MPa and did not influence negatively the bioactive potential of the cements. Results showed that the sucrose ester had a positive effect on all studied cell types (osteosarcoma cell line MG-63 and preosteoblasts MC3T3-E1), while the effect of the saponin differed depending on the origin of the cells (cancerous or non-cancerous). The obtained results shed new light on the use of biosurfactants as additives to CPCs and pave the way for further studies, especially in vivo.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Biomaterials Advances. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biomaterials Advances, 145, 2023 DOI: 10.1016/j.bioadv.2022.213273