Home > Research > Publications & Outputs > Classification of co-slicings and co-t-structur...

Links

Text available via DOI:

View graph of relations

Classification of co-slicings and co-t-structures for the Kronecker algebra

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Classification of co-slicings and co-t-structures for the Kronecker algebra. / Jorgensen, Peter; Pauksztello, David.
In: Journal of Pure and Applied Algebra, Vol. 219, No. 3, 03.2015, p. 569-590.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Jorgensen, P & Pauksztello, D 2015, 'Classification of co-slicings and co-t-structures for the Kronecker algebra', Journal of Pure and Applied Algebra, vol. 219, no. 3, pp. 569-590. https://doi.org/10.1016/j.jpaa.2014.05.015

APA

Vancouver

Jorgensen P, Pauksztello D. Classification of co-slicings and co-t-structures for the Kronecker algebra. Journal of Pure and Applied Algebra. 2015 Mar;219(3):569-590. Epub 2014 Jun 17. doi: 10.1016/j.jpaa.2014.05.015

Author

Jorgensen, Peter ; Pauksztello, David. / Classification of co-slicings and co-t-structures for the Kronecker algebra. In: Journal of Pure and Applied Algebra. 2015 ; Vol. 219, No. 3. pp. 569-590.

Bibtex

@article{15f6654a77f3440da315f7c6a1377f59,
title = "Classification of co-slicings and co-t-structures for the Kronecker algebra",
abstract = "In this paper we introduce the notion of a {\textquoteleft}generalised{\textquoteright} co-slicing of a triangulated category. This generalises the theory of co-stability conditions in a manner analogous to the way in which Gorodentsev, Kuleshov and Rudakov's t-stabilities generalise Bridgeland's theory of stability conditions. As an application of this notion, we use a complete classification of {\textquoteleft}generalised{\textquoteright} co-slicings in the bounded derived category of the Kronecker algebra, Db(KQ), to obtain a classification of co-t-structures in Db(KQ). This is then used to compute the co-stability manifold of Db(KQ).",
author = "Peter Jorgensen and David Pauksztello",
year = "2015",
month = mar,
doi = "10.1016/j.jpaa.2014.05.015",
language = "English",
volume = "219",
pages = "569--590",
journal = "Journal of Pure and Applied Algebra",
issn = "0022-4049",
publisher = "Elsevier",
number = "3",

}

RIS

TY - JOUR

T1 - Classification of co-slicings and co-t-structures for the Kronecker algebra

AU - Jorgensen, Peter

AU - Pauksztello, David

PY - 2015/3

Y1 - 2015/3

N2 - In this paper we introduce the notion of a ‘generalised’ co-slicing of a triangulated category. This generalises the theory of co-stability conditions in a manner analogous to the way in which Gorodentsev, Kuleshov and Rudakov's t-stabilities generalise Bridgeland's theory of stability conditions. As an application of this notion, we use a complete classification of ‘generalised’ co-slicings in the bounded derived category of the Kronecker algebra, Db(KQ), to obtain a classification of co-t-structures in Db(KQ). This is then used to compute the co-stability manifold of Db(KQ).

AB - In this paper we introduce the notion of a ‘generalised’ co-slicing of a triangulated category. This generalises the theory of co-stability conditions in a manner analogous to the way in which Gorodentsev, Kuleshov and Rudakov's t-stabilities generalise Bridgeland's theory of stability conditions. As an application of this notion, we use a complete classification of ‘generalised’ co-slicings in the bounded derived category of the Kronecker algebra, Db(KQ), to obtain a classification of co-t-structures in Db(KQ). This is then used to compute the co-stability manifold of Db(KQ).

U2 - 10.1016/j.jpaa.2014.05.015

DO - 10.1016/j.jpaa.2014.05.015

M3 - Journal article

VL - 219

SP - 569

EP - 590

JO - Journal of Pure and Applied Algebra

JF - Journal of Pure and Applied Algebra

SN - 0022-4049

IS - 3

ER -