Research output: Working paper › Preprint
Research output: Working paper › Preprint
}
TY - UNPB
T1 - Clifford algebra analogue of Cartan's theorem for symmetric pairs
AU - Calvert, Kieran
AU - Grizelj, Karmen
AU - Krutov, Andrey
AU - Pandžić, Pavle
N1 - 47 pages
PY - 2025/4/29
Y1 - 2025/4/29
N2 - We extend Kostant's results about $\mathfrak{g}$-invariants in the Clifford algebra $Cl(\mathfrak{g})$ of a complex semisimple Lie algebra $\mathfrak{g}$ to the relative case of $\mathfrak{k}$-invariants in the Clifford algebra $Cl(\mathfrak{p})$, where $(\mathfrak{g},\mathfrak{k})$ is a classical symmetric pair and $\mathfrak{p}$ is the $(-1)$-eigenspace of the corresponding involution. In this setup we prove the Cartan theorem for Clifford algebras, a relative transgression theorem, the Harish--Chandra isomorphism for $Cl(\mathfrak{p})$, and a relative version of Kostant's Clifford algebra conjecture.
AB - We extend Kostant's results about $\mathfrak{g}$-invariants in the Clifford algebra $Cl(\mathfrak{g})$ of a complex semisimple Lie algebra $\mathfrak{g}$ to the relative case of $\mathfrak{k}$-invariants in the Clifford algebra $Cl(\mathfrak{p})$, where $(\mathfrak{g},\mathfrak{k})$ is a classical symmetric pair and $\mathfrak{p}$ is the $(-1)$-eigenspace of the corresponding involution. In this setup we prove the Cartan theorem for Clifford algebras, a relative transgression theorem, the Harish--Chandra isomorphism for $Cl(\mathfrak{p})$, and a relative version of Kostant's Clifford algebra conjecture.
KW - math.RT
KW - math.DG
KW - 17B20, 22E60, 57T15, 57R91
M3 - Preprint
BT - Clifford algebra analogue of Cartan's theorem for symmetric pairs
ER -