Research output: Contribution to Journal/Magazine › Journal article › peer-review
Research output: Contribution to Journal/Magazine › Journal article › peer-review
}
TY - JOUR
T1 - Clustering by Minimum Cut Hyperplanes
AU - Hofmeyr, David
PY - 2017/8/31
Y1 - 2017/8/31
N2 - Minimum normalised graph cuts are highly effective ways of partitioning unlabeled data, having been made popular by the success of spectral clustering. This work presents a novel method for learning hyperplane separators which minimise this graph cut objective, when data are embedded in Euclidean space. The optimisation problem associated with the proposed method can be formulated as a sequence of univariate subproblems, in which the optimal hyperplane orthogonal to a given vector is determined. These subproblems can be solved in log-linear time, by exploiting the trivial factorisation of the exponential function. Experimentation suggests that the empirical runtime of the overall algorithm is also log-linear in the number of data. Asymptotic properties of the minimum cut hyperplane, both for a finite sample, and for an increasing sample assumed to arise from an underlying probability distribution are discussed. In the finite sample case the minimum cut hyperplane converges to the maximum margin hyperplane as the scaling parameter is reduced to zero. Applying the proposed methodology, both for fixed scaling, and the large margin asymptotes, is shown to produce high quality clustering models in comparison with state-of-the-art clustering algorithms in experiments using a large collection of benchmark datasets.
AB - Minimum normalised graph cuts are highly effective ways of partitioning unlabeled data, having been made popular by the success of spectral clustering. This work presents a novel method for learning hyperplane separators which minimise this graph cut objective, when data are embedded in Euclidean space. The optimisation problem associated with the proposed method can be formulated as a sequence of univariate subproblems, in which the optimal hyperplane orthogonal to a given vector is determined. These subproblems can be solved in log-linear time, by exploiting the trivial factorisation of the exponential function. Experimentation suggests that the empirical runtime of the overall algorithm is also log-linear in the number of data. Asymptotic properties of the minimum cut hyperplane, both for a finite sample, and for an increasing sample assumed to arise from an underlying probability distribution are discussed. In the finite sample case the minimum cut hyperplane converges to the maximum margin hyperplane as the scaling parameter is reduced to zero. Applying the proposed methodology, both for fixed scaling, and the large margin asymptotes, is shown to produce high quality clustering models in comparison with state-of-the-art clustering algorithms in experiments using a large collection of benchmark datasets.
U2 - 10.1109/TPAMI.2016.2609929
DO - 10.1109/TPAMI.2016.2609929
M3 - Journal article
VL - 39
SP - 1547
EP - 1560
JO - IEEE Transactions on Pattern Analysis and Machine Intelligence
JF - IEEE Transactions on Pattern Analysis and Machine Intelligence
SN - 0162-8828
IS - 8
ER -