Home > Research > Publications & Outputs > Combination of searches for heavy resonances de...

Links

Text available via DOI:

View graph of relations

Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36  fb−1 of proton-proton collision data at √s=13  TeV with the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36  fb−1 of proton-proton collision data at √s=13  TeV with the ATLAS detector. / The ATLAS collaboration.
In: Physical Review D, Vol. 98, No. 5, 052008, 26.09.2018.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{e70177ea27c844ae8b827240da70c2af,
title = "Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36  fb−1 of proton-proton collision data at √s=13  TeV with the ATLAS detector",
abstract = "Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons, are presented using a data sample corresponding to 36.1  fb−1 of pp collisions at √s=13  TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, ννqq, ℓνqq, ℓℓqq, ℓνℓν, ℓℓνν, ℓνℓℓ, ℓℓℓℓ, qqbb, ννbb, ℓνbb, and ℓℓbb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ℓν and ℓℓ final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.",
author = "{The ATLAS collaboration} and Barton, {Adam Edward} and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and Harald Fox and Henderson, {Robert Charles William} and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Amy Tee and Walder, {James William} and Wharton, {Andrew Mark} and Ben Whitmore",
year = "2018",
month = sep,
day = "26",
doi = "10.1103/PhysRevD.98.052008",
language = "English",
volume = "98",
journal = "Physical Review D",
issn = "1550-7998",
publisher = "American Physical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36  fb−1 of proton-proton collision data at √s=13  TeV with the ATLAS detector

AU - The ATLAS collaboration

AU - Barton, Adam Edward

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Fox, Harald

AU - Henderson, Robert Charles William

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Tee, Amy

AU - Walder, James William

AU - Wharton, Andrew Mark

AU - Whitmore, Ben

PY - 2018/9/26

Y1 - 2018/9/26

N2 - Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons, are presented using a data sample corresponding to 36.1  fb−1 of pp collisions at √s=13  TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, ννqq, ℓνqq, ℓℓqq, ℓνℓν, ℓℓνν, ℓνℓℓ, ℓℓℓℓ, qqbb, ννbb, ℓνbb, and ℓℓbb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ℓν and ℓℓ final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

AB - Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons, are presented using a data sample corresponding to 36.1  fb−1 of pp collisions at √s=13  TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, ννqq, ℓνqq, ℓℓqq, ℓνℓν, ℓℓνν, ℓνℓℓ, ℓℓℓℓ, qqbb, ννbb, ℓνbb, and ℓℓbb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ℓν and ℓℓ final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

U2 - 10.1103/PhysRevD.98.052008

DO - 10.1103/PhysRevD.98.052008

M3 - Journal article

VL - 98

JO - Physical Review D

JF - Physical Review D

SN - 1550-7998

IS - 5

M1 - 052008

ER -